NTTと日本大学は、通信波長の光に共鳴する希土類元素を添加した超音波素子を作製することにより、数ミリ秒の長い寿命を持つ光励起電子とギガヘルツ超音波のハイブリッド状態を生成することに成功した。
同成果により、低電圧な超音波励起を用いたコヒーレンスの高い希土類電子の制御が可能となるため、将来的な省エネ量子光メモリ素子への応用が期待される。
今回NTTと日本大学は、Erを添加した結晶基板上に超音波の一種である表面弾性波を生成する素子を作製することにより、約2GHzの振動歪を結晶表面に集中させ、Erの光共鳴周波数を高速変調することに成功した。
この変調速度は励起電子の寿命よりも速く、電子が共鳴線幅を上回る周波数で変調されるため、通信波長帯に共鳴する電子とギガヘルツ超音波のハイブリッド状態が生み出される。
この状態を用いることにより、コヒーレンスの高いEr励起電子の光応答を超音波で低電圧制御することができるため、将来的な省エネ量子光メモリ素子への応用が期待される。
今回作製した超音波素子には、同位体純化されたErが使用されている。電子と超音波のハイブリッド状態を実現するためには、Erの共鳴線幅を上回る周波数でEr電子準位を高速変調する必要があるため、なるべく細い線幅を与えるErを用いる必要がある。
Erには共鳴周波数が僅かに異なる複数の同位体が存在するため、一般的に得られる共鳴線幅は数GHz程度の広がりを見せるが、同位体純化したErの利用により、共鳴線幅は500MHzにまで狭線化される。
これに2GHzの超音波を作用させることにより、電子と超音波のハイブリッド状態を実現した。
このような狭い共鳴線幅の光吸収を評価するためには、実験に使用するレーザー光の周波数を高精度に安定化する必要がある。
NTTと日本大学は、光周波数コム(周波数上で櫛のように多数の等間隔なピークを持ったレーザー光)を利用したレーザー光の周波数安定化機構を共同開発することにより、従来に比べて3桁ほど周波数精度の高い実験を可能とした。
今回の実験では、振動歪が結晶表面付近に集中する表面弾性波を用いているが、歪の大きさが表面からの深さ位置に依存するため、ハイブリッドの程度が位置によって異なる。
今後、NTTと日本大学は、最表面のみにErを添加した材料の利用や、最表面のErだけ選択的に光アクセスできるような構造を導入することにより、ハイブリッド状態の均一性向上に取り組む。
ハイブリッド状態の均一性と制御性を高めることにより、通信波長帯で動作する省エネ量子光メモリ素子の実現と長距離量子通信への応用をめざす。<NTT>