産業技術総合研究所(産総研)極限機能材料研究部門 板坂 浩樹 研究員、劉 崢 上級主任研究員、三村 憲一 主任研究員、濱本 孝一 研究グループ長は、誘電体材料であるチタン酸バリウム(BTO)の立方体単結晶(ナノキューブ)単層膜と多層グラフェン膜の交互積層プロセス技術を開発した。
同研究で開発した技術では、約20nmサイズのBTOナノキューブを二次元的に規則配列させた単層膜と、2~3 nmの厚さの多層グラフェンを交互に重ね合わせた極めて薄い積層構造を作製することが可能であり、積層セラミックコンデンサー(MLCC)内部の誘電層と電極層の交互積層構造の飛躍的な薄層化を実現するための基盤技術として期待できる。
産総研は、MLCCの誘電体層の主要な原料であるBTOの微小粉末の合成技術と、合成した粉末を薄膜化する成膜技術の開発に関する研究に取り組んできた。
これまでに、水熱法によりBTOのナノサイズの立方体単結晶(ナノキューブ)の合成に成功しているとともに、分散液の溶媒の蒸発に伴う自己組織化を利用することでBTOナノキューブを二次元的に規則配列させた厚み約20nmの単層膜を作製する成膜技術を開発した。
BTOナノキューブは一般的なBTOナノ粒子に比べて結晶性が高く、1000℃未満の比較的低い処理温度でも優れた誘電性を示すことが期待できる材料。
また、従来のBTO粉末を用いて緻密な膜を作製するためには高温での熱処理を必要としていたが、サイズと形状の均一なBTOナノキューブを規則的に配列させることで、熱処理をすることなく緻密な膜が得られることもわかっている。
今回は、これらの技術により得られるBTOナノキューブ単層膜をMLCC内部の誘電層として応用することを目指し、電極層との交互積層化技術を開発した。
今後は、作製した積層構造のコンデンサー性能向上に向けた熱処理などのプロセスの最適化を行うとともに、量産化が可能なプロセスの開発に取り組むことにより、MLCCの飛躍的な小型化や大容量化につながる次世代プロセス技術の実現を目指す。<産業技術総合研究所(産総研)>
同研究で開発した技術では、約20nmサイズのBTOナノキューブを二次元的に規則配列させた単層膜と、2~3 nmの厚さの多層グラフェンを交互に重ね合わせた極めて薄い積層構造を作製することが可能であり、積層セラミックコンデンサー(MLCC)内部の誘電層と電極層の交互積層構造の飛躍的な薄層化を実現するための基盤技術として期待できる。
産総研は、MLCCの誘電体層の主要な原料であるBTOの微小粉末の合成技術と、合成した粉末を薄膜化する成膜技術の開発に関する研究に取り組んできた。
これまでに、水熱法によりBTOのナノサイズの立方体単結晶(ナノキューブ)の合成に成功しているとともに、分散液の溶媒の蒸発に伴う自己組織化を利用することでBTOナノキューブを二次元的に規則配列させた厚み約20nmの単層膜を作製する成膜技術を開発した。
BTOナノキューブは一般的なBTOナノ粒子に比べて結晶性が高く、1000℃未満の比較的低い処理温度でも優れた誘電性を示すことが期待できる材料。
また、従来のBTO粉末を用いて緻密な膜を作製するためには高温での熱処理を必要としていたが、サイズと形状の均一なBTOナノキューブを規則的に配列させることで、熱処理をすることなく緻密な膜が得られることもわかっている。
今回は、これらの技術により得られるBTOナノキューブ単層膜をMLCC内部の誘電層として応用することを目指し、電極層との交互積層化技術を開発した。
今後は、作製した積層構造のコンデンサー性能向上に向けた熱処理などのプロセスの最適化を行うとともに、量産化が可能なプロセスの開発に取り組むことにより、MLCCの飛躍的な小型化や大容量化につながる次世代プロセス技術の実現を目指す。<産業技術総合研究所(産総研)>