ブログ 「ごまめの歯軋り」

読書子のための、政治・経済・社会・文化・科学・生命の議論の場

読書ノート 高木貞治著  「近世数学史談」 岩波文庫

2016年07月29日 | 音楽
18世紀末ー19世紀初めの近世数学興隆記 ガウス、コーシー、アーベル、ヤーコビらの軌跡  第2回

序(その2)

高瀬成仁著 「人物で語る数学入門」がその書の後半で語るガウスに始まる代数的数論は、本書高木貞治著 「近世数学史談」の外観を与えると思われるので概略を紹介する。
『数論にはフェルマーとガウスの2つの流れがあります。フェルマーは直角三角形の基本定理によって素数を2つの平方の和に分けられる条件を求めました。それはラグランジュに受け継がれ、「素数の形状」についての理論を展開しました。一方ガウスは、素数と素数の間に成り立つ相互関係という数論を展開しました。ガウス(1779-1855年)はドイツの数学者、天文学者、物理学者である。彼はリーマンやデデキントらを育て、近代数学のほとんどの分野に影響を与えたと考えられている。19世紀最大の数学者の一人である。ガウスは16歳から「数学日記」を書き始めたという。1799年(20歳)で「代数学の基本定理」で学位を取りました。1801年に「アリトメチカ(数の理論)研究」という著作を刊行しました。フェルマーは4で割ると1が余る素数は2つの平方の和に分けられるという「直角三角形の基本定理」を主張しました。ガウスの合同式を使うと、フェルマーの直角三角形の定理は、a≡1(mod.4) と書けます。すなわちa-1は4で割り切れるということです。一般にa≡b(mod.c)は「aとbはcを法として合同である」といいます。法cを共通とする2つの合同式についても、加減乗除の演算規則が成立します。さらにガウスは17歳で「平方剰余相互法則の第1補充定理」でx^2≡±1(mod.p)によって、直角三角形の基本定理が成り立つことを裏付けました。次いで「平方剰余相互法則の第2補充定理」x^2≡2(mod.p)?証明して、あわせて「平方剰余の理論における基本定理」と呼びました。平方剰余とは、pを奇の素数、合同式x^2≡a(mod.p)が解けるとき、この合同式を満たす整数xが存在する場合は、aは「pの平方剰余」と呼びます。pとqを法とする2つの2次合同式 ① x^2≡p(mod.q)  ② x^2≡q(mod.p)が同時に解けたり解けなかったりする特定の「相互依存関係」に関心を寄せました。ガウスが見つけた相互関係は具体的には、①pとqのうちどちらかが4を法として1と合同なら、合同式は同時に解けるか、解けないかのいずれか、②pとqがどちらも4をhぷとして3と合同なら、合同式①と②はどちらか一方は解けるが、もう一方は解けない、というものでした。これらの相互関係をルジャンドルは記号を使って、(a/p)=+1(解ける)、(a/p)=-1(解けない)とすると、、解けるケースと解けないケースの繰り返し演算規則が成立し、平方剰余の相互規則、第1補充定理、第2補充定理の関係式を表現しました。ラグランジェ(1736-1813年)は「変分法の領域に属する等時曲線」の問題を研究していましたが、ホイエンスが等時曲線はサイクロイドであることを示しました。ルジャンドル(1752-1833年)は「不定問題を整数を用いて解くあたらしい方法」1770年で、フェルマーの課題「ay^2+1=x^2(aは正の数)をみたすxとyを求めよ」という問題を、オイラーの連分数の手法により必ず解を持つことを示しました。こうした不定問題を解くことが「数の理論」(数論)と見なされていました。直角三角形の基本定理は「4n+1という線形的形状を持つ素数は、つねにx^2+y^2という平方的形状を持つ」と言い換えることができます。ガウスは不定問題の2次形式A=Bt^2+Ctu+Du^2が整数解を持つのは若干の特別な場合のみであると考えていました。ラグランジェは完全な決定を行いました。奇数の素数は(2を除いて素数は全部奇数である)「4n+1型」と「4n+3型」に区分けされます。ラグランジェは「4n+3型」の素数について一般理論を構築しました。ルジャンドルは解ける解けないケース別けにつてルジャンドルの記号を導入して相互法則を提案しましたが、4n+1型についてルジャンドルは証明に成功しませんでした。ルジャンドルの「相互法則」とガウスの「平方剰余」が組み合わされて今日の数論の「平方剰余の相互法則」が出来上がったのです。ガウスはさらに3次以上の剰余の理論 x^n≡a(mod.b)の研究を開始したのは1807年以降のことです。1813年ガウスは4時の冪剰余相互法則を発見したといわれています。しかし論文となるにはさらに15年かかりましたが(1828年)、証明はついていません。4次の冪剰余相互法則は、整数域では見つからず複素数に及びました。ガウスはこれを「ガウス整数」と呼びました。ガウスは虚数という呼び名がそもそもパラドキシカルであって、正の量を順量、負の量を逆量、虚の量を測量と呼ぼうと提案しました。その後、代数的整数論という理論が生まれ、ヤコビ、ディリクレ、クロネッカー、クンマー、ウエーバー、ヒルベルト、と続き、ヒルベルトのところに留学した高木貞治は「類体論」を生みました。

(つづく)


最新の画像もっと見る

コメントを投稿