光産業技術動向ブログ OITT

OITTとは、Optoelectronic Industry and Technology Trendの略称です。

データセンタエクスチェンジの実現に向けAPNを活用した光波長パス設定技術を確立し実証 ~自動化により光波長パスの設計・設定を数時間から数分へと大幅に短縮~

2023年10月25日 | 新技術開発

 日本電信電話株式会社(本社:東京都千代田区、代表取締役:島田 明、以下「NTT」) と日本電気株式会社(本社:東京都港区、取締役 代表執行役社長 兼 CEO:森田 隆之、以下「NEC」)は、通信需要に応じたデータセンタ間の大容量低遅延接続の実現に向け、IOWN (※1) Global Forum (※2) にてアーキテクチャの制定が進んでいるAPN (※3) を活用した光波長パス (※4) 設計技術を確立し、トリノ工科大学、コロンビア大学、デューク大学、ダブリン大学と共同で、National Science Foundation (NSF)の COSMOSテストベッド (※5) を用いてフィールド実証を行いました。
 


本成果により、これまで、熟練作業者が2~3時間以上かけて行っていた光波長パスの設計・設定を自動化により数分で実施することが可能となりました。これはNTTやNEC等がIOWNにて提唱している、必要な対地間をオンデマンドに光波長パスで接続し、分散されたデータセンタ間で大容量低遅延通信を行うデータセンタエクスチェンジ (DCX) サービス(図1)の実現に大きく貢献します。
 本開発実証結果に関してはスコットランドで開催された光通信技術に関するヨーロッパ最大の国際会議(49th European Conference on Optical Communications(ECOC))で報告しBest Paperに選出され、スペインで開催されたTelecom Infra Project (※6) Fyuz event (※7) にて紹介しました。
【用語解説】
※1
Innovative Optical and Wireless Network (IOWN)
あらゆる情報を基に個と全体との最適化を図り、光を中心とした革新的技術を活用し、高速大容量通信ならびに膨大な計算リソースなどを提供可能な、端末を含むネットワーク・情報処理基盤。
NTTニュースリリース「NTT Technology Report for Smart World:What's IOWN?」
https://group.ntt/jp/newsrelease/2019/05/09/190509b.html
※2
IOWN Global Forum
これからの時代のデータや情報処理に対する要求に応えるために、新規技術、フレームワーク、技術仕様、リファレンスデザインの開発を通じ、シリコンフォトニクスを含むオールフォトニクス・ネットワーク、エッジコンピューティング、無線分散コンピューティングから構成される新たなコミュニケーション基盤の実現を促進する新たな業界フォーラム。
https://iowngf.org/当該ページを別ウィンドウで開きます
※3
All Photonics Network (APN)
IOWN Global Forumにてオープンにアーキテクチャ策定が行われているフォトニクス技術をベースとした革新的ネットワーク。IOWNのユースケースを支えるネットワークとして、必要なときに必要な地点間を光パスでダイレクトに接続可能にする。
https://www.rd.ntt/iown/当該ページを別ウィンドウで開きます
※4
光波長パス
光トランシーバ間で特定の波長を用いて接続されたコネクション。光トランシーバ間で波長を占有することで低遅延・大容量の通信が可能。
※5
National Science Foundation (NSF) COSMOSテストベッド
NSF出資による、ニューヨーク市に構築された学術網。
https://www.cosmos-lab.org/当該ページを別ウィンドウで開きます
※6
Telecom Infra Project (TIP)
世界で必要とされる高品質な接続性を提供するために数百社を含む多様なメンバーが参画し、オープン化・ディスアグリゲーション化・標準化に基づくソリューションを開発・試験・展開するグローバルコミュニティ
https://telecominfraproject.com/当該ページを別ウィンドウで開きます
※7
Fyuz
TelefonicaやVodafone等のヨーロッパの通信キャリアやMetaなど、オープンネットワークやディスアグリゲーション・ネットワーク・ソリューションのリーダーや、幅広い通信業界関係者が集まり、高度なコネクティビティ・ソリューションの展開についてプレゼンテーションや展示を行うヨーロッパのイベント。
https://www.fyuz.events/当該ページを別ウィンドウで開きます
※8
デジタルコヒーレント技術
コヒーレント光受信とデジタル信号処理 (DSP) と組み合わせた伝送方式。コヒーレント光受信とは、受信側に配置した光源と、受信した光信号を干渉させることにより、光の強度だけでなく偏波や位相を利用した変調が可能となり、光伝送の大容量化(周波数利用効率の向上)が可能となる。コヒーレント光受信とDSPを用いた高精度な光信号の補償を組み合わせることにより、大幅な受信感度向上を実現する。
※9
シリコンフォトニクス技術
シリコンエレクトロニクスの製造技術をベースとした光集積回路技術であり、微細加工性、集積性、経済性、そして省エネルギー性に優れ、近年の光集積回路の大規模化に必須の技術。
※10
Wavelength Division Multiplexing (WDM)
異なる波長は互いに干渉しないという性質を利用して、一つの光伝送路に異なる複数の波長を同時に伝送する方式。WDMにおいて波長を高密度に多重化して超大容量光伝送を実現するものを特にDense WDM (DWDM) と呼ぶ。
※11
Open ROADM MSA
ROADM(Re­con­figura­ble Optical Add-Drop Multiplexer)システムをベンダ間で相互運用できるようにするためのインタフェースや、仕様を定義しているMSA(Multi Service Agreement)。
http://openroadm.org/当該ページを別ウィンドウで開きます
※12
NECのオープン光400Gトランスポンダ製品がTIP PhoenixのSilver Badge認定を獲得
https://prtimes.jp/main/html/rd/p/000000408.000078149.html当該ページを別ウィンドウで開きます
※13
Transport PCE
光伝送装置をベンダ固有でない汎用的なインタフェースにて制御するコントローラ。
https://docs.opendaylight.org/en/latest/release-notes/projects/transportpce.html当該ページを別ウィンドウで開きます


さらに概要を知りたい方は次の記事を見てください。
NTTグループニュース 

光技術や光産業の情報交流フォーラム
エイトラムダフォーラムhttps://www.e-lambdanet.com/8wdm/





コメント    この記事についてブログを書く
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする
« NTTイノベーティブデバイスは... | トップ | フィールド環境敷設のマルチ... »
最新の画像もっと見る

コメントを投稿

新技術開発」カテゴリの最新記事