10月2日の SCOPE で講演していただいた Timo Berthold 氏ですが、今週末に開催される
KSMAP 合宿において、以下の内容でチュートリアル講演が予定されています。
http://www.kurims.kyoto-u.ac.jp/~tanigawa/ksmap-camp/program.html#tutorial
この KSMAP での講演と同じ内容で以下に日時に講演していただけることになりました。
日 時 : 2010年10月4日(月)13:30~
会 場 : 中央大学 後楽園キャンパス 6 号館 10階 経営システム工学科会議室
Timo Berthold氏 (Zuse Institute Berlin) 「What are constraint integer programs and how do we solve them?」
概要: Mixed-integer programming (MIP) and constraint programming (CP) proved to be a powerful tools to model and solve large-scale optimization problems. Constraint integer programming (CIP) is a novel generalization of MIP that supports the notion of arbitrary constraints as in CP. We introduce the basic notion and algorithmic ideas of CIP. Further, we present the software SCIP which is a solver and framework for constraint integer programming that also features SAT solving techniques. SCIP is available in source code and free for non-commercial use.
We illustrate the algorithmic design and the main sequence of the solving steps. Furthermore, we describe the various algorithmic components that enrich the basic CIP framework and discuss their role in the solving process. In this talk, we will mainly focus on techniques for solving mixed-integer programs. Computational experiments indicating the potential of the approach are provided
KSMAP 合宿において、以下の内容でチュートリアル講演が予定されています。
http://www.kurims.kyoto-u.ac.jp/~tanigawa/ksmap-camp/program.html#tutorial
この KSMAP での講演と同じ内容で以下に日時に講演していただけることになりました。
日 時 : 2010年10月4日(月)13:30~
会 場 : 中央大学 後楽園キャンパス 6 号館 10階 経営システム工学科会議室
Timo Berthold氏 (Zuse Institute Berlin) 「What are constraint integer programs and how do we solve them?」
概要: Mixed-integer programming (MIP) and constraint programming (CP) proved to be a powerful tools to model and solve large-scale optimization problems. Constraint integer programming (CIP) is a novel generalization of MIP that supports the notion of arbitrary constraints as in CP. We introduce the basic notion and algorithmic ideas of CIP. Further, we present the software SCIP which is a solver and framework for constraint integer programming that also features SAT solving techniques. SCIP is available in source code and free for non-commercial use.
We illustrate the algorithmic design and the main sequence of the solving steps. Furthermore, we describe the various algorithmic components that enrich the basic CIP framework and discuss their role in the solving process. In this talk, we will mainly focus on techniques for solving mixed-integer programs. Computational experiments indicating the potential of the approach are provided