最適化問題に対する超高速&安定計算

大規模最適化問題、グラフ探索、機械学習やデジタルツインなどの研究のお話が中心

グラフ分割問題に対する SDP 緩和と SDPA-GMP

2010年02月28日 10時09分56秒 | Weblog
応用に役立つ50の最適化問題の 5.4 章(グラフ分割問題に対する SDP 緩和問題)において SDP 緩和問題を SDPA-GMP を用いて解いているが、SDPA ではダメなのか?という質問があった。この問題では SDPA を用いても別に問題は無いと思われるが、以下のように数値精度という点で SDPA-GMP に劣るので、出来れば SDPA-GMP の値の方を使いたい。
SDPA では主問題の最適目的関数値(上界) -1.1972046804133166e-01 > 双対問題の最適目的関数値(下界) -1.2187341887583791e-01 であるが、双対問題の実行可能性の指標(d.feas.error) があまり良くないので、SDPA-GMP の最適目的関数値 -1.1957989287e-01 が SDPA のこの上界と下界の範囲に含まれていない。この点がやはり気になったので、SDPA-GMP の方を用いた。

SDPA 7.3.1
objValPrimal = -1.1972046804133166e-01   <-- 主問題の目的関数値
objValDual = -1.2187341887583791e-01   <-- 双対問題の目的関数値
p.feas.error = +2.2737367544323206e-13
d.feas.error = +2.1173717223987865e-09

SDPA-GMP 7.1.2
objValPrimal = -1.1957989287e-01 <-- 主問題の目的関数値
objValDual = -1.1957989287e-01 <-- 双対問題の目的関数値
p.feas.error = 2.8917634547e-76
d.feas.error = 4.5890565996e-38
コメント (4)    この記事についてブログを書く
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする
« スーパーコンピュータで最短... | トップ | 平成21年度 SCOPE 研究会報告 »
最新の画像もっと見る

4 コメント

コメント日が  古い順  |   新しい順
Unknown (NakataMaho)
2010-03-01 23:46:11
今学会でアメリカです。メールが
遅れない(?)です。仕事遅くなりまして
すいませんが、帰国までお待ちください。
返信する
Unknown (FujisawaKatsuki)
2010-03-02 03:09:29
どうもお疲れ様です。データの件もよろしくお願いします。
返信する
Unknown (NakataMaho)
2010-03-14 07:34:05
遅くなりまして、申し訳ないです。
送りました。
返信する
Unknown (FujisawaKatsuki)
2010-03-14 22:28:20
お忙しいところありがとうございます。
どこに送っていただいたのでしょうか?
返信する

コメントを投稿

ブログ作成者から承認されるまでコメントは反映されません。

Weblog」カテゴリの最新記事