和英特許翻訳メモ

便利そうな表現、疑問、謎、その他メモ書き。思いつきで書いてます。
拾った用例は必ずしも典型例、模範例ではありません。

経路に設け

2021-05-19 17:36:30 | 英語特許散策

WO2019152966
[0208] In some embodiments, power supply 1260 in on body electronics 1110 may be toggled between its internal power source ( e.g ., a battery) and the RF power received from display device 1120.
【0177】
  いくつかの実施形態では、オンボディ電子機器1110内の電源1260は、その内部電源(例えば、電池)と表示デバイス1120から受信されたRF電力との間で切り替えられ得る。

For example, in some embodiments, on body electronics 1110 may include
例えば、いくつかの実施形態では、オンボディ電子機器1110は、

a diode or a switch that is provided in the internal power source connection path in on body electronics 1110 such that,

when a predetermined level of RF power(*cf. RF power of a predetermined level)is detected by on body electronics 1110,
所定のレベルのRF電力がオンボディ電子機器1110によって検出された場合に、

the diode or switch is triggered to disable the internal power source connection (e.g., making an open circuit at the power source connection path),
ダイオードまたはスイッチがトリガされて内部電源接続が無効になり(例えば、電源接続経路で開回路を形成する)、

and the components of on body electronics is powered with the received RF power.
オンボディ電子機器のコンポーネントが、受信されたRF電力で給電されるように、オンボディ電子機器1110の内部電源接続経路に設けられたダイオードまたはスイッチを含み得る。

The open circuit at the power source connection path prevents the internal power source from draining or dissipating as in the case when it is used to power on body electronics 1110.
電源接続経路の開回路は、内部電源がオンボディ電子機器1110に給電するために用いられる場合のように、内部電源の消耗または散逸を防止する。

 

多くの人々:a large number of people (people of a large numberとは言わない)

広大な土地:a large expanse of land (land of a large expanseとは言わない・・・多分)

この種類の問題:this type of question (question of this typeは言う。There are numerous questions of this type. )

この種の人々:this type of people (people of this typeは言う.  This type of people are everywhere.  People of this type are everywhere.)

優しい人:kind person (person of kindness?)

所定のレベルの電力:a predetermined level of power(power of a predetermined levelは良さそう)

所定の電圧の電源:a power supply of a predetermined voltage(a predetermined voltage of power supplyでも良さそう? )

所定の電圧の電源を必要とする:A power supply of a predetermined voltage is required.  A predetermined voltage of power supply is requiredは言う、多分。

10年の経験:ten years of experience(experience of ten years は言うらしい。Writing Tip 383: Apostrophes with “Years of Experience” & “Years’ Experience”しかし前者の方が頻度は高いと思う)

WO2019020167
[00117] In FIG. 5D, the first carrier 11 is aligned with respect to the second carrier 13 by the alignment unit 125 that is provided in a mechanical connection path between the first mount 121 and the second mount 122.
【0118】
  図5Dでは、第1のキャリア11が、第1のマウント121と第2のマウント122との間の機械的連結経路に設けられた位置合わせユニット125によって、第2のキャリア13に対して位置合わせされ得る。

Accordingly, the mask and the substrate are aligned relative to each other with a high accuracy. Then, a coating material 112 may be deposited on the substrate, particularly by evaporation.したがって、マスクと基板は、高い精度で互いに対して位置合わせされる。その後、被覆材料112が、特に、蒸着によって基板上に堆積し得る。

WO2018169595
[0052] With that in mind one aspect of the present approach is the use of coincidence logic to identify charge-sharing events.
【0039】
  これを念頭に、本手法の1つの側面は、電荷共有事象を識別するための一致ロジックの使用である。

Such logic may be implemented as part of an application specific integrated circuit (ASIC) or as routines executable by a general- purpose processor or circuit where the routines or ASIC is provided in the data readout path of the detector 28.
このようなロジックを、特定用途向け集積回路(ASIC)の一部として実装でき、あるいは汎用のプロセッサまたは回路によって実行することができるルーチンとして実装することができ、ルーチンまたはASICは、検出器28のデータ読み出し経路に設けられる。

For example, such an ASIC or routines may be provided as part of the detector 28 (such as part of the readout circuity provided on the detector itself) or downstream from the detector on the DAS or other detector control or readout component.
例えば、そのようなASICまたはルーチンを、検出器28の一部(検出器自体に設けられた読み出し回路の一部など)として設けることができ、あるいはDASまたは他の検出器の制御もしくは読み出しの構成要素において検出器の下流に設けることができる。

コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

先頭のスロット

2021-05-19 12:38:33 | 英語特許散策

WO2013002958
[0089] FIGURE 11 includes a block diagram 1100 illustrating alignment between LTE frames 1120 and Bluetooth slots 1110 for multi-radio coexistence management according to one aspect of the present disclosure.
【0072】
  (ブルートゥース・マスタ・ルール)  
  図11は、本開示の1つの態様にしたがうマルチ・ラジオ共存管理のためのLTEフレーム1120とブルートゥース・スロット1110とのアライメントを例示するブロック図1100を示す。

As shown in FIGURE 11 , a multi-radio UE includes a LTE radio and a Bluetooth radio that operates as a master device.
図11に示されるように、マルチ・ラジオUEは、マスタ・デバイスとして動作するブルートゥース・ラジオとLTEラジオとを含む。

Representatively, CLK 1102 is the Bluetooth native clock, with bits 3: 1 of CLKN 1102 being shown to illustrate a slot count.
代表的に、CLKN1102は、ブルートゥース本来のクロックであり、ビット3:1であるCLKN1102が、スロット・カウントを例示するために示されている。

In this configuration, CLKN 1102 is a half-slot clock. In Bluetooth communications, the Bluetooth master devices transmit in even slots and the slave devices transmit in odd slots.
この構成では、CLKN1102は、半スロット・クロックである。ブルートゥース通信では、ブルートゥース・マスタ・デバイスは、偶数スロットにおいて送信し、スレーブ・デバイスは、奇数スロットにおいて送信する。

In this configuration, the Bluetooth master transmits data during the master transmit slot 1112 and receives data during the slave transmit slot 1114.
この構成では、ブルートゥース・マスタは、マスタ送信スロット1112の間にデータを送信し、スレーブ送信スロット1114の間にデータを受信する。

Similarly, the Bluetooth slave device transmits data during the slave transmit slot 1114 and receives data during the master transmit slot 1112.
同様に、ブルートゥース・スレーブ・デバイスは、スレーブ送信スロット1114の間にデータを送信し、マスタ送信スロット1112の間にデータを受信する。

[0090] One rule for configuring Bluetooth master behavior aligns the boundary 1116 between a Bluetooth master transmit slot 1112 and a Bluetooth slave transmit slot 1114 with the transition 1126 between a LTE transmit (UL) sub-frame 1122 and a LTE receive (DL) sub-frame 1124.
【0073】
  ブルートゥース・マスタ挙動を設定する1つのルールは、ブルートゥース・マスタ送信スロット1112とブルートゥース・スレーブ送信スロット1114との間の境界1116を、LTE送信(UL)サブフレーム1122とLTE受信(DL)サブフレーム1124との間の遷移1126に揃える。
 
As shown in FIGURE 11, the Bluetooth master transmit slot "0" 1112 is aligned to the end of the LTE transmit uplink (UL) sub- frame 1122.
図11に図示されるように、ブルートゥース・マスタ送信スロット“0”1112は、LTE送信アップリンク(UL)サブフレーム1122の終端に揃えられる。
 
As the Bluetooth clock 1102 transitions to a slave transmit slot "1" 1114, LTE transitions to the beginning of a receive downlink (DL) sub-frame 1124, as indicated by a transition 1126.
ブルートゥース・クロック1102が、スレーブ送信スロット“1”1114に移行すると、遷移1126によって示されるように、LTEは、受信ダウンリンク(DL)サブフレーム1124の先頭に移行する。
 
Thus, the boundary 1116 between the Bluetooth master transmit slot 1112 to the slave transmit slot 1114 is aligned with the transition 1126 from the LTE transmit sub-frame 1122 to the LTE receive sub-frame 1124.
したがって、ブルートゥース・マスタ送信スロット1112とスレーブ送信スロット1114との間の境界1116は、LTE送信サブフレーム1122からLTE受信サブフレーム1124への遷移1126に揃えられる。
 
This example for configuration of Bluetooth behavior for a Bluetooth master device is referred to as frame alignment,
ブルートゥース・マスタ・デバイスのためのブルートゥース挙動の構成のこの例は、フレーム・アライメントと称される。
 
where the transition 1126 of the LTE frames 1120 aligns with the boundary 1116 of the Bluetooth slots 1110.
ここで、LTEフレーム1120の遷移1126は、ブルートゥース・スロット1110の境界1116と揃っている。
 
Such frame alignment may be achieved through any suitable means of configuring Bluetooth and/or LTE communications.
このようなフレーム・アラインメントは、ブルートゥース通信および/またはLTE通信の任意の適切な手段によって達成されうる。
 
This frame alignment guideline may be referred to herein as "Master Rule lm".
このフレーム・アラインメント・ガイドラインは、本明細書では、「マスタ・ルール1m」と称されうる。
 
EP2301291
[0050] As described, the relay node 302 can be open half duplex so it can receive or transmit in a given time slot;
【0040】
  説明するように、リレー・ノード302は、所与の時間スロットにおいて受信または送信できるように、オープン・ハーフ・デュプレクスでありうる。
 
thus, only the backhaul link component 202 or the access link component 204 can be active in a given time slot.
したがって、バックホール・リンク構成要素202あるいはアクセス・リンク構成要素204のみが、所与の時間スロットにおいて、アクティブになりえる。
 
In addition, as mentioned, the backhaul link component 202 can receive information from the access point 304,
さらに、説明するように、バックホール・リンク構成要素202は、アクセス・ポイント304から情報を受信し、
 
decode the information, and re-transmit the information to the mobile device 306 using the access link component 204.
この情報を復号し、この情報を、アクセス・リンク構成要素204を用いてモバイル・デバイス306へ再送信しうる。
 
In another example, as mentioned, the backhaul link component 202 can receive a signal from the access point 304,
別の例では、説明するように、バックホール・リンク構成要素202が、アクセス・ポイント304から信号を受信し、
 
and the access link component 204 can add amplification, redundancy, and/or the like to the signal (e.g., superimposing on top of the signal) and forward the signal to the mobile device 306.
アクセス・リンク構成要素204が、この信号に増幅、冗長性等を加え(例えば、信号の先頭への重ね合わせを行い)、この信号をモバイル・デバイス306へ転送しうる。
 
The relay node 302 can similarly receive, decode, and forward (or receive, amplify, and forward) on the uplink as well.
リレー・ノード302は、アップリンクでも同様に、受信、復号、および転送(または、受信、増幅、および転送)を行う。
 
EP3216308
[0079] Connected Discontinuous Reception (C-DRX) generally refers to a technique used in wireless communication to reduce power consumption, thereby conserving the battery of the mobile device.
【0066】
  接続不連続受信(C-DRX)は一般に、電力消費量を低減し、それによってモバイルデバイスのバッテリーを節約するためにワイヤレス通信において使用される技法を指す。
 
The mobile device and the network negotiate phases in which data transfer occurs, where a receiver of the mobile device is turned on (e.g., in a connected state), referred to as an ON duration of the C-DRX cycle.
モバイルデバイスおよびネットワークは、C-DRXサイクルのON持続時間と呼ばれる、(たとえば、接続状態において)モバイルデバイスの受信機がオンにされる場合に、データ転送が行われる位相をネゴシエートする。
 
During other times, referred to as OFF durations, the mobile device turns its receiver off and enters a low power state.
OFF持続時間と呼ばれる他の時間の間、モバイルデバイスはその受信機をオフにし、低電力状態に入る。
 
There is usually a function designed into the protocol for this purpose.
通常、この目的のためにプロトコル内に設計された機能がある。
 
For example, the transmission may be structured in slots with headers containing address details so that devices may listen to these headers in each slot to decide whether the transmission is relevant to the devices or not.
たとえば、送信は、デバイスが、その送信がデバイスに関連するかどうかを決定するために各スロットにおいてアドレスの詳細を含むヘッダをリッスンし得るように、これらのヘッダを用いてスロットにおいて構造化され得る。
 
In this case, the receiver may only be active at the beginning of each slot to receive the header, conserving battery life.
この場合、受信機は、ヘッダを受信するために各スロット先頭のみにおいてアクティブになり、バッテリー寿命を節約し得る。
 
Other DRX techniques include polling, whereby the device is placed into standby for a given amount of time and then a beacon is sent by the base station periodically to indicate if there is any data waiting for it.
他のDRX技法はポーリングを含み、それによって、デバイスは所与の時間の間スタンバイにされ、次いで、スタンバイを待つ任意のデータがあるかどうかを示すためのビーコンが基地局によって周期的に送られる。
 
EP2486691
[0054] In LTE systems, certain REs 206 have been allocated to transmission of control signals (e.g., control region) at the start of each subframe. In FIG. 3, the REs 206 corresponding to these allocated REs 206 are hatch-marked.
【0038】
  LTEシステムでは、あるRE206が、各サブフレームの先頭において、制御信号の送信(例えば、制御領域)のために割り当てられうる。図3では、これら割り当てられたRE206に対応するRE206が、ハッチングされている。
 
Although the control region is shown to span 3 OFDM symbols in the present example, it is understood that the control region may span a different number of OFDM symbols in other examples.
制御領域は、この例では、3つのOFDMシンボルに及ぶように示されているが、制御領域は、別の例では、別の数のOFDMシンボルに及びうることが理解される。
 
Additionally, certain REs 206 are allocated to a Common (or Cell-Specific) Reference Signal (CRS).
さらに、あるRE206は、共通(またはセル特有)の基準信号(CRS)に割り当てられる。
 
The CRS is shifted in positions, based on an identity of the eNB 110 of a particular cell, in RBs.
CRSは、特定のセルのeNB110の識別情報に基づいて、RB内の位置にシフトされうる。
 
In FIG. 3, the tiles marked "C" represent REs 206 that may be used for CRS transmission. 
図3では、“C”とマークされたタイルは、CRS送信のために使用されうるRE206を表わす。
コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

PUSCH

2021-05-19 11:55:06 | 単語

US20180302868
In one aspect, the technology provides for contention free physical uplink shared control channel (PUSCH) transmission using a listen before talk procedure. In one example, an apparatus of a user equipment (UE) can have circuitry comprising one or more processors configured to achieve low latency synchronization with an anchor enhanced Node (eNB) by sensing for a predetermined time period if any physical uplink shared channels (PUSCH) are idle with the anchor eNB for uplink (UL) synchronization, provide a unique UE identification in a PUSCH transmission, and/or communicate the PUSCH transmission in one of the idle PUSCH channels for contention free communication with the anchor eNB for uplink synchronization.

33. An apparatus of a user equipment (UE), the apparatus, under control of one or more processors and memory(*無冠詞), to achieve low latency synchronization with an enhanced Node B (eNB), the apparatus configured to:
sense for a predetermined time period if(*かどうか検知)any physical uplink shared channels (PUSCH) are idle;
provide a unique UE identification in a PUSCH transmission; and
communicate the PUSCH transmission in one of the idle PUSCH channels(*channelが重なるが?)for contention free communication with the eNB for uplink synchronization.

US10117193
7. The communication apparatus according to claim 1, wherein when a plurality of PUSCHs are configured on the first component carrier, the adjusting circuitry adjusts the power for PUSCH transmission by reducing respective powers for the plurality of PUSCHs.

WO2020030555
According to certain embodiments, a method performed by a wireless device is provided for receiving an uplink scheduling grant for a plurality of physical uplink shared channels (PUSCHs). The method includes receiving, from a network node, downlink control information (DCI). The DCI includes an indication corresponding to at least a time domain resource for each of the plurality of PUSCHs. Based on the indication, uplink scheduling grant resources are determined for the plurality of PUSCHs. At least one transmission is sent according to the determined uplink scheduling grant resources.

(*PUSCHs表記は少ない?)

US10892846
In addition to low cost, link budget requirements could be increased, for example, 20 dB coverage enhancement to cover devices in the basement. In order to meet this coverage increase, large TTI bundling has been proposed to achieve 20 dB link budget gain. For example, transmission time interval (TTI) bundling with large bundling size for both downlink (e.g., physical broadcast channel (PBCH), physical downlink control channel (PDCCH) and enhanced PDCCH, physical hybrid automatic repeat request (HARQ) indicator channel (PHICH), and physical downlink shared channel (PDSCH)) and uplink (e.g., random access channel (RACH), physical uplink control channel (PUCCH), and physical uplink shared channel (PUSCH)) channels may be used.

US20180367272
34. The method of claim 33, wherein the RBs for the short PUCCH and the short PUSCH channels are adjacent to each other and the channels are transmitted independently.

 

コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

DMRS, DCI, OFDM

2021-05-19 10:48:45 | 単語

DMRS: DeModulation Reference Signal, "a reference signal for PUSCH implying that eNodeB would not be able to decode PUSCH if this PUSCH DMRS is bad," DMRS - PUSCH, LTE Dictionary, ShareTechnote  

DCI: Downlink Control Information, "a special set of information which schedules downlink data channel (e.g, PDSCH) or uplink data channel (e.g, PUSCH)", DCI, ShareTechnote

OFDM: Orthogonal Frequency Divisition Multiplexing, Communication - OFDM, ShareTechnote       

US10420083
TECHNICAL FIELD

Embodiments described herein relate generally to wireless networks and communications systems. Some embodiments relate to cellular communication networks including 3GPP (Third Generation Partnership Project) networks, 3GPP LTE (Long Term Evolution) networks, and 3GPP LTE-A (LTE Advanced) networks, although the scope of the embodiments is not limited in this respect.

BACKGROUND

In Long Term Evolution (LTE) systems, a mobile terminal (referred to as a User Equipment or UE) connects to the cellular network via a base station (referred to as an evolved Node B or eNB). Current LTE systems utilize orthogonal frequency division multiple access (OFDMA) for the downlink (DL) and a related technique, single carrier frequency division multiple access (SC-FDMA), for the uplink (UL). For next generation radio access technologies, o OFDMA-based multicarrier modulation is an attractive(*有望、期待、興味深い、訴求)uplink air interface because it allows for simplified receiver structures and enhanced interference cancellation schemes when the downlink air interface is also OFDMA based. However, a new multicarrier modulation scheme in the uplink also requires a redesign of resource element (RE) mapping when uplink control information (UCI) is transmitted together with data over a shared uplink channel. Described herein are methods and associated apparatuses to transmit uplink control information in an uplink shared channel based upon OFDMA waveforms.


In current LTE systems, uplink control information (UCI) such as channel state information (CSI) or HARQ ACK/NACK feedback can be transmitted on either the physical uplink control channel (PUCCH) or the physical uplink shared channel (PUSCH). In the latter case, UCI needs to be multiplexed with uplink shared channel (UL-SCH) data. In addition, each PUSCH transmission is accompanied by demodulation reference signals (DMRS) to allow demodulation of the PUSCH symbols at the receiver. The mapping of DMRS, UCI and UL-SCH data to physical resources is tightly interconnected. For example, UCI transmission is generally more protected than data transmission as an unsuccessful UCI transmission could potentially trigger a downlink re-transmission or result in sub-optimal adaptive modulation and coding (AMC). Hence, ACK/NACK bits may be mapped to resource elements (REs) in the time/frequency resource grid that are adjacent to DMRS as is the case in LTE.

1. An apparatus for a UE (user equipment), comprising:
memory and processing circuitry(*無冠詞)configured to:
encode uplink control information (UCI) multiplexed with uplink shared channel (UL-SCH) data for transmission over a shared orthogonal frequency division multiple access (OFDMA) channel in physical resource blocks (PRBs) of a subframe containing a plurality of time-frequency resource elements (REs);
map UCI selected from hybrid automatic request repeat acknowledgement (HARQ-ACK) signals or channel state information (CSI) signals to REs of OFDM symbols of the subframe that do not contain demodulation reference signal (DMRS) REs;
divide channel quality information (CQI) into multiple segments, map the CQI segments to REs of the PRB first(*先ず)in the frequency domain and then(*次いで、次に)in the time domain such that the segments are evenly distributed across the two slots of the subframe, and map UL-SCH data to REs of the PRB first in the frequency domain and then in the time domain.

US20190045390
BACKGROUND
[0002]
Wireless systems typically include multiple User Equipment (UE) devices communicatively coupled to one or more Base Stations (BS). The one or more BSs may be Long Term Evolved (LTE) evolved NodeBs (eNB) or New Radio (NR) next generation NodeBs (gNB) that can be communicatively coupled to one or more UEs by a Third-Generation Partnership Project (3GPP) network.
[0003]
Next generation wireless communication systems are expected to be a unified network/system that is targeted to meet(*達成することを目標とする)vastly different and sometimes conflicting performance dimensions and services. New Radio Access Technology (RAT) is expected to support a broad range of use cases including Enhanced Mobile Broadband (eMBB), Massive Machine Type Communication (mMTC), Mission Critical Machine Type Communication (uMTC), and similar service types operating in frequency ranges up to 100 GHz.

BRIEF DESCRIPTION OF THE DRAWINGS
[0004]
Features and advantages of the disclosure will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of the disclosure; and, wherein:
[0005]
FIG. 1 illustrates an advanced receiver with a physical broadcast channel (PBCH) interference cancellation capability in accordance with an example;
[0006]
FIG. 2 illustrates a signal processing flow at an advanced receiver of a user equipment (UE) for decoding and reading a target cell's New Radio physical broadcast channel (NR-PBCH) in accordance with an example;
[0007]
FIG. 3 illustrates a plurality of code block segments in accordance with an example;
[0008]
FIG. 4 is a table of values for numbers of resource elements (NREs) based on different values of NREs per physical resource block (PRB) and a number of PRBs (NRBs) in accordance with an example;
[0009]
FIG. 5 depicts functionality(*機能)of a user equipment (UE) operable to determine a transport block size (TBS) in accordance with an example;
[0010]
FIG. 6 depicts functionality of a user equipment (UE) operable to decode a variable power offset received from a Next Generation NodeB (gNB) in accordance with an example;
[0011]
FIG. 7 depicts a flowchart of a machine readable storage medium having instructions embodied thereon(*記憶媒体)for determining a transport block size (TBS) at a user equipment (UE) in accordance with an example;
[0012]
FIG. 8 illustrates an architecture of a wireless network in accordance with an example;
[0013]
FIG. 9 illustrates a diagram of a wireless device (e.g., UE) in accordance with an example;
[0014]
FIG. 10 illustrates interfaces of baseband circuitry in accordance with an example; and
[0015]
FIG. 11 illustrates a diagram of a wireless device (e.g., UE) in accordance with an example.
[0016]
Reference will now be made to the exemplary embodiments illustrated, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the technology is thereby intended.

What is claimed is:
1. An apparatus of a user equipment (UE) operable to determine a transport block size (TBS), the apparatus comprising:
one or more processors configured to:
determine, at(*において)the UE, a number of(*の数;不定冠詞)assigned resource elements (REs) in one or more symbols for a transport block;
determine, at the UE, a reference number of REs per physical resource block (PRB) in the transport block based on a reference number of REs for the transport block corresponding to each PRB and an assigned number of PRBs for the transport block;
determine, at the UE, a TBS for the transport block based at least on the reference number of REs per PRB in the transport block, a scheduled modulation order, an intended code rate and a number of layers mapped to the TBS;
encode, at the UE, information in a selected transport block for transmission via a physical uplink shared channel (PUSCH) to a Next Generation NodeB (gNB) in accordance with the TBS determined at the UE; and
decode, at the UE, information in a selected transport block received from the gNB via a physical downlink shared channel (PDSCH) in accordance with the TBS determined at the UE; and
a memory interface configured to send to a memory an indication(*語順)of the TBS.

コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

当ブログの例文について

本ブログの「特許英語散策」等題した部分では、英語の例文を管理人の独断と偏見で収集し、適宜訳文・訳語を記載しています。 訳文等は原則として対応日本語公報をそのまま写したものです。私個人のコメント部分は(大抵)”*”を付しています。 訳語は多数の翻訳者の長年の努力の結晶ですが、誤訳、転記ミスもあると思いますのでご注意ください。