救急一直線 特別ブログ Happy保存の法則 ー United in the World for Us ー

HP「救急一直線〜Happy保存の法則〜」は,2002年に開始され,現在はブログとして継続されています。

文献紹介 全身性炎症におけるメラトニンを再考する

2012年09月08日 04時16分38秒 | 論文紹介 全身性炎症反応
1. Sircadian mechanisms in the regulation of melatonin synthesis: disruption with light at night and the pathophysiological consequences
Russel J. Reiter, Dun Xian Tan, Emilio Sanchez-Barcelo, Maria D. Mediavilla, Eloisa Gitto, Ahmet Korkmaz. J Exp Integr Med. 2011; 1(1): 13-22

In the past two decades, the results of a number of epidemiological studies have uncovered an association between excessive light exposure at night and the prevalence of cancer. Whereas the evidence supporting this link is strongest between nighttime light and female breast and male prostate cancer, the frequency of other tumor types may also be elevated. Individuals who have the highest reported increase in cancer are chronic night shift workers and flight attendants who routinely fly across numerous time zones.
There are at least two obvious physiological consequences of nighttime light exposure, i.e., a reduction in circulating melatonin levels and disruption of the circadian system (chronodisruption). Both these perturbations in experimental animals aggravate tumor growth. Melatonin has a long investigative history in terms of its ability to stymie the growth of many tumor types. Likewise, in the last decade chronodisruption has been unequivocally linked to a variety of abnormal metabolic conditions including excessive tumor growth.
This brief review summarizes the processes by which light after darkness onset impedes melatonin production and disturbs circadian rhythms. The survey also reviews the evidence associating the ostensible danger of excessive nighttime light pollution to cancer risk. If an elevated tumor frequency is definitively proven to be a consequence of light at night and/or chronodisruption, it seems likely that cancer will not be the exclusive pathophysiological change associated with the rampant light pollution characteristic of modern societies.

2. Beneficial effects of endogenous and exogenous melatonin on neural reconstruction and functional recovery in an animal model of spinal cord injury 2012; 52(1): 107.

The purpose of this study was to investigate the beneficial effects of endogenous and exogenous melatonin on functional recovery in an animal model of spinal cord injury (SCI). Eight-week-old male Sprague-Dawley (SD, 250–260 g) rats were used for contusion SCI surgery. All experimental groups were maintained under one of the following conditions: 12/12-hr light/dark (L/D) or 24:0-hr constant light (LL). Melatonin (10 mg/kg) was injected subcutaneously for 4 wk, twice daily (07:00, 19:00). Locomotor recovery, inducible nitric oxide synthase (iNOS), glial fibrillary acidic protein gene expression, and muscle atrophy-related genes, including muscle atrophy F-box (MAFbx) and muscle-specific ring-finger protein 1 (MuRF1) gene expression were evaluated. Furthermore, autophagic signaling such as Beclin-1 and LC3 protein expression was examined in the spinal cord and in skeletal muscle. The melatonin treatment resulted in increased hind-limb motor function and decreased iNOS mRNA expression in the L/D condition compared with the LL condition (P < 0.05), indicating that endogenous melatonin had neuroprotective effects. Furthermore, the MAFbx, MuRF1 mRNA level, and converted LC3 II protein expression were decreased in the melatonin-treated SCI groups under the LL (P < 0.05), possibly in response to the exogenous melatonin treatment. Therefore, it seems that both endogenous and exogenous melatonin contribute to neural recovery and to the prevention of skeletal muscle atrophy, promoting functional recovery after SCI. Finally, this study supports the benefit of endogenous melatonin and use of exogenous melatonin as a therapeutic intervention for SCI.

3. Glucose: A vital toxin and potential utility of melatonin in protecting against the diabetic state
Molecular and Cellular Endocrinology 2012; 349(2): 128.

The molecular mechanisms including elevated oxidative and nitrosative reactants, activation of pro-inflammatory transcription factors and subsequent inflammation appear as a unified pathway leading to metabolic deterioration resulting from hyperglycemia, dyslipidemia, and insulin resistance. Consistent evidence reveals that chronically-elevated blood glucose initiates a harmful series of processes in which toxic reactive species play crucial roles. As a consequence, the resulting nitro-oxidative stress harms virtually all biomolecules including lipids, proteins and DNA leading to severely compromised metabolic activity. Melatonin is a multifunctional indoleamine which counteracts several pathophysiologic steps and displays significant beneficial effects against hyperglycemia-induced cellular toxicity. Melatonin has the capability of scavenging both oxygen and nitrogen-based reactants and blocking transcriptional factors which induce pro-inflammatory cytokines. These functions contribute to melatonin’s antioxidative, anti-inflammatory and possibly epigenetic regulatory properties. Additionally, melatonin restores adipocyte glucose transporter-4 loss and eases the effects of insulin resistance associated with the type 2 diabetic state and may also assist in the regulation of body weight in these patients. Current knowledge suggests the clinical use of this non-toxic indoleamine in conjunction with other treatments for inhibition of the negative consequences of hyperglycemia for reducing insulin resistance and for regulating the diabetic state.

4. Plasma Melatonin and Urinary 6-Hydroxymelatonin Levels in Patients with Pulmonary Tuberculosis
Inflammation 2012

Tuberculosis (TB) is the second most frequent cause of death in the world, after AIDS. Delay in diagnosing TB is an important worldwide problem. It seriously threatens public health. Cell-mediated immune responses play an important role in the pathogenesis of TB infection. The course of Mycobacterium tuberculosis (MTb) infection is regulated by two distinct T cell cytokine patterns. Melatonin is a biomolecule (mainly secreted by the pineal gland) with free radical scavenging, antioxidant and immunoregulatory properties. Melatonin has both its direct and indirect immunomodulatory effects on the immune system. In this study, we measured plasma melatonin and urine 6-hydroxy melatonin sulphate (6-HMS) concentrations in patients with newly diagnosed TB for the purpose of investigating whether there was a relationship between their levels and MTb infection. Thirty-one newly diagnosed patients presenting with active TB and 31 healthy subjects as the control group were included in this study. Blood and 24-h urine samples were collected from all individuals. Plasma melatonin levels and urine 6-HMS were measured. Our results show that in patients with TB, mean melatonin and 6-HMS concentrations were significantly lower than in the control subjects (p&#8201;=&#8201;0.037, p&#8201;<&#8201;0.001, respectively). We believe that the treatment of TB patients with melatonin might result in a wide range of health benefits including improved quality of life and reduced severity of infection in these patients. Supplementation with melatonin may be considered as an adjunctive therapy to classic treatment of pulmonary TB, especially during the acute phase of infection.

5. Beneficial actions of melatonin in the management of viral infections: a new use for this “molecular handyman”?
Rev. Med. Virol. 2012

Melatonin (N-acetyl-5-methoxytryptamine) is a multifunctional signaling molecule that has a variety of important functions. Numerous clinical trials have examined the therapeutic usefulness of melatonin in different fields of medicine. Clinical trials have shown that melatonin is efficient in preventing cell damage under acute (sepsis, asphyxia in newborns) and chronic states (metabolic and neurodegenerative diseases, cancer, inflammation, aging). The beneficial effects of melatonin can be explained by its properties as a potent antioxidant and antioxidant enzyme inducer, a regulator of apoptosis and a stimulator of immune functions. These effects support the use of melatonin in viral infections, which are often associated with inflammatory injury and increases in oxidative stress. In fact, melatonin has been used recently to treat several viral infections, which are summarized in this review. The role of melatonin in infections is also discussed herein. Copyright &#169; 2012 John Wiley & Sons, Ltd.

6. Gene regulation by melatonin linked to epigenetic phenomena
Gene 2012:503;1-11

Many exogenous (e.g., toxins, chemicals, ultraviolet, cigarette smoke) and endogenous (e.g., hyperglycemia, dyslipidemia, cytokines, chemokines) agents disrupt the intracellular environment and result in a massive production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The molecular damage that ROS/RNS induce is referred to as nitrooxidative stress. The cellular consequences of nitrooxidative stress include lipid peroxidation, protein oxidation and DNA damage. Additionally, ROS and RNS deplete cellular defenses and initiate inflammation. It is widely accepted that nitrooxidative stress and inflammation play important roles in the pathogenesis of a variety of human diseases and sequelae. Several processes are crucial to overcome the damaging cellular events caused by nitrooxidative stress, e.g., scavenging both ROS and RNS, induction of defense mechanisms and alleviating/suppressing inflammation are essential. Both endogenous and pharmacological concentrations of melatonin have long been known to play role in the direct scavenging of ROS and RNS as well as inducing antioxidant defense mechanisms and ameliorating inflammation. The current review summarizes research related to two major transcription factors that participate in these processes and summarizes how melatonin regulates antioxidant and pro-inflammatory genes via epigenetic on/off mechanisms.

<font color="red">7. Melatonin in bacterial and viral infections with focus on sepsis: a review.
Srinivasan V, Mohamed M, Kato H.
Recent Pat Endocr Metab Immune Drug Discov. 2012 Jan;6(1):30-9. Review.

この総説は読まれてみて下さい。敗血症におけるメラトニン研究は,現在このレベルで留まっています。

Melatonin is a versatile molecule, synthesized not only by the pineal gland, but also in small amounts by many other organs like retina, gastrointestinal tract, thymus, bone marrow, lymphocytes etc. It plays an important role in various functions of the body like sleep and circadian rhythm regulation, immunoregulatory mechanism, free radical scavenger, antioxidant functions, oncostatic actions, control of reproductive functions, regulation of mood etc. Melatonin has also been found to be effective in combating various bacterial and viral infections. Its administration has been shown to be effective in controlling chlamydial infections, infections induced by Mycobacterium tuberculosis, and also in many viral infections. Molecular mechanisms of anti microbial actions of melatonin have suggested to be due to effects on free radical formation, direct regulation of duplication of bacteria, depletion of intracellular substrates like iron etc. Besides, it is effective in sepsis as demonstrated in various animal models of septic shock. Melatonin's protective action against sepsis is suggested to be due to its antioxidant, immunomodulating and inhibitory actions against the production and activation of pro-inflammatory mediators. Use of melatonin has been beneficial in treating premature infants suffering from severe respiratory distress syndrome and septic shock. It has a potential therapeutic value in treating septic shock and associated multi organ failure in critically ill patients in addition to its antimicrobial and antiviral actions. The patents related to melatonin's use for treatment of bacterial infections and its use in clinical disorders are included.

8. Melatonin in septic shock: some recent concepts.
Srinivasan V, Pandi-Perumal SR, Spence DW, Kato H, Cardinali DP.
J Crit Care. 2010 Dec;25(4):656.e1-6.


Melatonin is a versatile molecule, synthesized not only in the pineal gland, but also in many other organs. Melatonin plays an important physiologic role in sleep and circadian rhythm regulation, immunoregulation, antioxidant and mitochondrial-protective functions, reproductive control, and regulation of mood. Melatonin has also been reported as effective in combating various bacterial and viral infections. Melatonin is an effective anti-inflammatory agent in various animal models of inflammation and sepsis, and its anti-inflammatory action has been attributed to inhibition of nitric oxide synthase with consequent reduction of peroxynitrite formation, to the stimulation of various antioxidant enzymes thus contributing to enhance the antioxidant defense, and to protective effects on mitochondrial function and in preventing apoptosis. In a number of animal models of septic shock, as well as in patients with septic disease, melatonin reportedly exerts beneficial effects to arrest cellular damage and multiorgan failure. The significance of these actions in septic shock and its potential usefulness in the treatment of multiorgan failure are discussed.
この記事についてブログを書く
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする
« 文献 英国 The new intensi... | トップ | ジャーナルクラブ Circulatio... »
最新の画像もっと見る

論文紹介 全身性炎症反応」カテゴリの最新記事