救急一直線 特別ブログ Happy保存の法則 ー United in the World for Us ー

HP「救急一直線〜Happy保存の法則〜」は,2002年に開始され,現在はブログとして継続されています。

J. Clin. Invest. 115:556-564 (2005)

2005年03月31日 20時24分52秒 | 論文紹介 細胞内情報伝達
Altered intracellular Ca2+ handling in heart failure
山口大学 矢野先生

Stabilization of RyR.
The RyR2 has been shown to be hyperphosphorylated by PKA in both human and experimental HF (23, 39, 91-94), although admittedly Jiang et al. did not observe PKA hyperphosphorylation of RyR2 in a canine model of HF (46). Many large clinical trials have shown that treatment with a ß blocker restores cardiac function and reduces the rate of mortality in patients with HF (2, 95). Several researchers have reported recently that in experimental and human HF, ß blockers reversed PKA-mediated hyperphosphorylation of RyR2, restored the stoichiometry of the RyR2 macromolecular complex, restored normal single-channel function, and inhibited the Ca2+ leak (91-93). These findings may provide a molecular basis for the common clinical observation that the use of ß receptor blockers improves the prognosis of patients with HF. In a canine model of HF, we found that the angiotensin II–receptor blocker valsartan, which has been used in the treatment of HF in the clinical setting, also normalizes the Ca2+ regulatory process through a ß blocker–like action (94). By acting on the presynaptic angiotensin II receptor, valsartan inhibited norepinephrine release and stimulated norepinephrine uptake back into the synaptic pool, with the result that adrenergic signals were not overtransmitted into the cell. This would lead to a reduction in the PKA-hyperphosphorylation of RyR2 and to an inhibition of the Ca2+ leak in the failing heart (94).

Since a conformational change in RyR2 precedes the Ca2+ leak (23), an amelioration of this conformational change could be a new therapeutic strategy against HF (Figure 3). Using a canine model of HF, we recently found that chronic administration of a new compound, the 1,4-benzothiazepine derivative JTV519, improved contractility and prevented the development of LV remodeling and HF, presumably by stabilization of RyR2 (80). In JTV519-untreated hearts, RyR2 was PKA-hyperphosphorylated with a dissociation of FKBP12.6 whereas the reverse of these states was true of JTV519-treated hearts, in which channel phosphorylation returned toward the levels seen in the normal heart (80). Using FKBP12.6+/– mice, Wehrens et al. (49) demonstrated that JTV519 increased the affinity of FKBP12.6 for RyR2, which stabilized the closed state of RyR2 and prevented the Ca2+ leak that triggers arrhythmias. In their study, FKBP12.6–/– mice showed an increase in RyR2 open probability, ventricular tachycardia, and sudden cardiac death upon either exercise or PKA-phosphorylation. JTV519 did not prevent arrhythmias in FKBP12.6–/– mice, indicating that the presence of FKBP12.6 in the heart is required for the therapeutic effects of JTV519 to be expressed (49), although it needs to be determined whether the same is true in FKBP12.6-depleted (by PKA-phosphorylation or FK506) RyR2. Lehnart et al. (96) found that recombinant RyR2 channels containing the missense mutations seen in CPVT patients (RyR2-P2328S, RyR2-Q4201R, and RyR2-V4653F) showed defective channel-gating properties (that is, an increase in open probability and resistance to Mg2+-induced inhibition after PKA phosphorylation) and that JTV519 normalized this abnormal channel gating via a rebinding of FKBP12.6 to the channel complex. Collectively, the above data suggest that stabilization of RyR2 may represent a new molecular target for the treatment or prevention of exercise-induced arrhythmias and sudden death in patients with CPVT mutations and HF.

Therapeutic strategy involving FKBP12.6-mediated stabilization of RyR. A small influx of Ca2+ through the LTCC leads to the release of a large amount of Ca2+ from the SR through RyR in the normal heart. In HF, however, PKA-mediated hyperphosphorylation of RyR2 occurs, and this in turn dissociates FKBP12.6 from RyR2, leading to a diastolic Ca2+ leak through RyR2. This results in the Ca2+ transient being diminished (due to the reduced SR Ca2+ content and dyssynchronous Ca2+ release). Administration of a new compound, the 1,4-benzothiazepine derivative JTV519, normalizes this abnormal channel gating by restoring the conformational state of RyR and by rebinding FKBP12.6 to the channel complex. Thereby, JTV519 normalizes Ca2+ cycling and contractile function in failing cardiac myocytes and hence provides chronic suppression of progressive left ventricular dysfunction in HF. P, PKA phosphorylation at serine 2809; [Ca2+]i, intracellular [Ca2+].

  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

Mol Pharmacol 2005 67: 977-979

2005年03月28日 12時19分38秒 | 論文紹介 全身性炎症反応
Delphine Baetz, James Shaw, and Lorrie A. Kirshenbaum
(Perspective) Nuclear Factor-B Decoys Suppress Endotoxin-Induced Lung Injury
僕の論文の評価と展望を書いています。

Over millions of years, cells have evolved an elaborate defense systems to ward off and destroy foreign invaders. A key step in the host cells' defense repertoire against bacterial or viral infection includes an inflammatory response mediated by certain cells of the immune system. Once activated, such cells (predominantly T lymphocytes) undergo extensive clonal expansion, resulting in the production and liberation of pro-inflammatory factors such as tumor necrosis factor , nitric oxide (NO), and others that underlie the sequelae of the inflammatory process. Though crucial for cell survival, excess or uncontrolled activation of inflammatory pathways has been linked to a number of human pathologies including autoimmune diseases, cardiovascular diseases, such as atherosclerosis and myocarditis, and end-organ failure from endotoxic injury. For example, excessive levels of circulating NO from sustained activation of inducible nitric-oxide synthase (iNOS) is believed to account for the increased vascular permeability and vasodilatory responses associated with sepsis-induced lung injury commonly seen in patients with adult respiratory distress syndrome. Interventions designed to modulate immune cell activation and the inflammatory process more generally may have therapeutic advantage in treating patients with systemic inflammatory diseases.

To test whether functional inactivation of NF-B could suppress endotoxin-induced lung injury, in this issue of Molecular Pharmacology, Matsuda et al. (2005) evaluate the effects of "decoy" `cis'-acting oligonucleotides (ODN) directed against NF-B on inflammatory gene expression and pulmonary function in a cecal-ligation puncture model of sepsis. In this report, the authors delivered ODN in vivo using the hemagglutinating virus of Japan-envelope (HVJ), which had been previously reported as an effective vehicle for delivering small ODN into cells in vivo (Morishita and Kaneda, 2002). The premise behind this technique lies in the ability of the NF-B ODN decoy to suppress simultaneously the expression of several inflammatory genes that contain NF-B binding elements. The authors found that intravenous injection of ODN significantly reduced the increase of NF-B activity during sepsis, as indicated by electromobility shift analysis. Moreover, NF-B decoy markedly reduced the expression levels of iNOS, COX-2, histamine H1-receptor, platelet-activating factor receptor, and bradykinin B1 and B2 receptors in the septic lung tissue. It is noteworthy that animals treated with NF-B ODN displayed an improved outcome with a significant reduction in sepsis-induced lung injury compared with control animals or animals treated with scrambled ODN.

The strength of the ODN decoy technique lies in its ability to compete for the cis-NF-B binding elements, thereby blocking the actions of NF-B. As shown in Fig. 1, the NF-B decoy inactivates NF-B activity by competing with the endogenous NF-B cis elements at the level of the DNA, thereby interfering with NF-B gene transcription and gene activation. Therefore, such a decoy approach has the potential to block the inflammatory response mediated by one or more genetic pathways. Several reports document the utility of a "decoy" strategy to treat disease manifestation. For example, NF-B decoys have been shown to reduce the incidence of myocardial cell and neuronal cell damage after ischemic injury (Morishita et al., 1997; Ueno et al., 2001) and to decrease hypoxia-induced apoptosis of human aortic endothelial cells (Matsushita et al., 2000). Furthermore, in vivo transfection of NF-B decoy has been shown to attenuate the development of autoimmune myocarditis (Yokoseki et al., 2001). This strategy may also be adapted to treat other disease entities involving de-regulated activation of NF-B including proliferative disorders such as cancer (Biswas et al., 2003, 2004).

Although many studies support the use of "decoy" technology to inactivate certain genes or genetic pathways to "treat" a given pathology, several considerations must be kept in mind. First, given that many genes undergo alternative splicing, thereby resulting in gene products with different functions within the cell, the complete inactivation of a given genetic element and/or pathway may have detrimental cellular consequences. Therefore, it may be important to design decoy molecules that could be selectively "turned on" or "turned off" to prevent untoward effects. Second, specificity of the decoy ODN in question may be an issue because overlapping or cryptic sites within DNA may result in nonspecific effects from inactivation of members of one or more gene family. Third, safety issues regarding vector type and administration technique must be considered, especially given that the ultimate goal is to modulate gene expression in humans.

Nevertheless, given that the inflammatory process represents a major cause of morbidity in patients with endotoxin-induced sepsis, the elegant work of Matsuda et al. (2005) provides new compelling evidence that oligonucleotide decoys directed against the transcription factor NF-B may be an effective treatment for averting, or at least attenuating, the inflammatory response at the genetic level.

  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

Mol Pharmacol 2005 67: 1018-1025

2005年03月23日 00時32分50秒 | 論文紹介 全身性炎症反応
誰も敗血症の遺伝子治療など考えていないときに発案した思い出深い研究です。
この第3弾,第4弾は,さらに驚くべき結果となっており,後世に残る研究となると考えております。

Nuclear Factor-kB Decoy Oligodeoxynucleotides Prevent Acute Lung Injury in Mice with Cecal Ligation and Puncture-Induced Sepsis
Naoyuki Matsuda, Yuichi Hattori and Satoshi Gando
Departments of Anesthesiology and Critical Care Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan


Abstract

The transcription factor nuclear factor-kB (NF-kB) plays a key role in expression of many inflammatory genes responsible for the pathophysiology of sepsis-induced acute lung injury. We investigated whether the introduction of synthetic double-stranded oligodeoxynucleotides (ODNs) with consensus NF-kB sequence as transcription factor decoy can prevent acute lung injury with suppression of pulmonary expression of multiple genes involved in its pathological process in a cecal ligation and puncture septic mouse model. NF-kB decoy ODNs were introduced with the aid of the hemagglutinating virus of Japan-envelope vector method. Northern blot analysis indicated that transfection of NF-kB decoy ODN, but not of its scrambled form, resulted in a significant inhibition of sepsis-induced gene overexpression of inducible nitric-oxide synthase (iNOS), cyclooxygenase-2, histamine H1-receptor, platelet-activating factor receptor, and bradykinin B1 and B2 receptors in lung Histological damage in lungs tissues. (wall thickening, inflammatory infiltrate, and hemorrhage), increased pulmonary vascular permeability, and blood gas exchange impairment were clearly documented in mice after cecal ligation and puncture. These changes were strongly eliminated by the introduction of NF-kB decoy but not of scrambled ODN. The effects of the iNOS inhibitor FR260330 on these histological and functional derangements compared unfavorably with those of NF-kB decoy ODN transfection. Our results suggest that ODN decoy, acting as in vivo competitor for the transcription factor's ability to bind to cognate recognition sequence, may represent an effective strategy in the treatment of septic acute lung injury.

  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

J Clin Invest. 2005 Feb;115(2):221-4. 血管平滑筋傷害

2005年03月19日 18時43分32秒 | 論文紹介 全身性炎症反応
Defining smooth muscle cells and smooth muscle injury.

Mahoney WM, Schwartz SM.

Department of Pathology, University of Washington, Seattle, Washington 98195-7335, USA.

For 3 decades, terms such as synthetic phenotype and contractile phenotype have been used to imply the existence of a specific mechanism for smooth muscle cell (SMC) responses to injury. In this issue of the JCI, Hendrix et al. offer a far more precise approach to examining the mechanisms of SMC responses to injury, focused not on general changes in phenotype but on effects of injury on a single promoter element, the CArG [CC(A/T)6GG] box, in a single gene encoding smooth muscle (SM) alpha-actin. Since CArG box structures are present in some, but not all, SMC genes, these data suggest that we may be progressing toward establishing a systematic, molecular classification of both SMC subsets and the response of SMCs to different injuries.

敗血症病態の血管平滑筋傷害をこの半年,再び,検討し始めております。

  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

Br J Pharmacol 144: 715-726, 2005 スタチンとエンドセリン

2005年03月19日 11時34分46秒 | 論文紹介 全身性炎症反応
Effects of statins on vascular function of endothelin-1
Fatima Mraiche1, Jonathan Cena1, Debarsi Das1 and Bozena Vollrath1

1Department of Pharmacology, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
Correspondence: Bozena Vollrath, E-mail: bozena.vollrath@ualberta.ca

Although statins have been reported to inhibit the prepro-endothelin-1 (ET-1) gene transcription in endothelial cells, their effects on the vascular function of ET-1 have not been explored. We, therefore, examined the effects of statins on contraction and DNA synthesis mediated by ET-1 in vascular smooth muscle. The effects of statins on contraction induced by ET-1 were compared to those mediated by noradrenaline (NA) and KCl.
Simvastatin (SV) induced a concentration-dependent relaxation of tonic contraction mediated by ET-1 (10 nM) (IC50 value of 1.3 M). The relaxation was also observed in rings precontracted with NA (0.1 M) and KCl (60 mM). In contrast, pravastatin did not have any effect on the contractions.
Endothelial denudation or pretreatment with L-NAME did not prevent the relaxation, but did reduce the relaxant activity of SV.
SV prevented Rho activation caused by ET-1 and KCl in aortic homogenates, as assessed by a Rho pulldown assay.
The Rho kinase inhibitor HA-1077 mimicked the effects of SV on tonic contractions induced by ET-1, NA and KCl.
Pretreatment with the Kv channels inhibitor, 4-aminopyridine, attenuated the ability of SV to relax contractions mediated by ET-1 and NA.
In quiescent VSM cells, SV significantly inhibited DNA synthesis and Rho translocation stimulated by ET-1, as assessed by [3H]thymidine incorporation and Western blot, respectively.
Inhibition of Rho geranylgeranylation by GGTI-297, or treatment with HA-1077, mimicked the effects of SV on DNA synthesis stimulated by ET-1.
The results show that the statin potently inhibits both ET-1-mediated contraction and DNA synthesis via multiple mechanisms. Clinical benefits of statins may result, in part, from their effects on vascular function of ET-1.

僕の敗血症病態におけるスタチンの研究はほぼ完結に近づいています。

  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

敗血症性ショック(Septic Shock)における輸液

2005年03月16日 19時15分20秒 | 講義録・講演記録 2

敗血症性ショックにおける輸液


京都大学大学院医学研究科
初期診療・救急医学分野
准教授 松田直之

【はじめに】
Sepsis,septic shock,MODS(multiple organ dysfunction syndrome)が,American College of Chest Physicians とSociety of Critical Care Medicineの2学会の合同委員会で定義されたのが1991年であり,その合意事項は1992年に両学会誌に発表された1)。この定義により,sepsisに対する共通の管理指針が提示されるようになり,2004年にはThe Society of Critical Care Medicineがsurviving sepsis campaign guidelinesを発表した2)。本項では,これらをふまえて,現行の敗血症性ショックの輸液療法をまとめる。

【1】敗血症性ショックの定義と病態 
1.敗血症とは感染に起因したSIRSである
Sepsis(敗血症)は感染症を原因とする全身性炎症反応症候群(systemic inflammatory response syndrome: SIRS)である。SIRSは,)体温(>38℃あるいは<36℃),)心拍数(>90/分),)呼吸数(>20/分あるいはPaCO2<32 torr),)白血球数(>12,000/mm3,<4,000/mm3あるいは未熟球>10%)の4項目のうち,2項目以上を満たす場合に診断される。敗血症の進行により,急性循環不全,臓器機能不全,乳酸アシドーシスを合併した病態がsevere sepsis(重症敗血症)と定義される1)。敗血症が疑われる場合は,原因菌の同定に努め,抗菌薬の適正使用やドレナージを検討する。

2.敗血症性ショックの2面性 ―暖かい末梢から冷たい末梢へ―
 敗血症に収縮期血圧90 mmHg以下の血圧低下(平時血圧が110 mmHg以下である場合は20 mmHg以上の血圧低下)をきたし,組織低灌流,組織酸素代謝失調により組織・細胞の恒常性が維持できないと評価された場合,敗血症性ショックとして治療にあたる。
 敗血症性ショックの初期は一酸化窒素(NO)などの血管拡張物質の過剰産生により体血管抵抗が低下するために心後負荷が軽減し,高心拍出状態(hyper-dynamic state)となりやすい。このような体血管抵抗の減じたwarm shockでは,相対的な循環血液量の低下に対して十分な輸液を行ない,組織末梢の酸素運搬を改善することが必要である。一方,敗血症の進行により血管内皮細胞障害が具現化し始めると,血管拡張性や血液凝固抑制が損なわれ,末梢循環の乏しいcold shockへ移行する3)。体血管抵抗の増加により心後負荷が増大し,心収縮性の低下が表面化し,輸液に反応しない低心拍出状態(hypo-dynamic state)となる。このように,敗血症の輸液療法に際しては,ショックの病期や病態の把握が必要であり,循環血液量と心収縮性の両面を評価する必要がある。

【2】 輸液療法のモニター 
1.動脈圧波形と体表エコー図を有効に活用しよう
敗血症性ショックの輸液では,まず,循環血液量と心収縮性の評価が大切である。ショックでは診断と治療を同時に行なう迅速性が要求されため,後述する輸液チャレンジが推奨されるが,まず,パルスオキシメータ波形の呼吸性変動に注目し,次に観血的動脈圧測定では,その波形の変化を観察するとよい。敗血症warm shockの動脈圧波形は,相対的循環血液量減少に伴う強い呼吸性変動,体血管抵抗減弱によるdicrotic notchの消失を特徴とする(図1参照)。急速輸液により心前負荷を高めた場合,動脈圧波形の呼吸性変動が抑制でき,dp/dtが改善することを観察する。また,同時に,心エコ-図で心機能と器質的病変の存在を評価するとよい。肋骨弓下アプローチによる下大静脈径測定は輸液管理に必修であり,直径23 mm以上で下大静脈拡大と評価するが,径の呼吸性変動により心前負荷の不足を評価する。下大静脈径は吸気時と呼気時の2点で絶対値の記録をし,輸液による径の変化を観察する(図2参照)。

2.中心静脈ラインと肺動脈カテーテルとエコー
 敗血症性ショックは数日以上の治療となる場合が多く,体液バランス,心前負荷,治療効果を,担当医師間で共通の指標として申し送ることが大切である。この際,共通の管理指針として中心静脈や肺動脈カテーテルから得られる情報は有用である。
 中心静脈圧は連続測定とし,絶対値で評価するだけでなく,変化を経時的にとらえることで,病態や輸液量の評価に役立つ。また,難治的な敗血症性ショックの治療やcold shockの循環の評価には,肺動脈カテーテルも有用であり,心不全の治療に準じた輸液管理や薬物使用を可能とする。輸液の有効性と酸素負債の改善は混合静脈血酸素飽和度で評価するのがよいが,肺動脈カテーテルの留置されない場合には,中心静脈カテーテルから採取した中心静脈血で代用できる。カテーテルは第2の感染源となる可能性があるため,治療指針が得られた際や突然の発熱などの場合には,速やかに抜去する。エコーが利用できる場合は,エコーを積極的に利用することで代替えとできる。

3.体重計測は毎朝の日課としよう
敗血症病態は,血管透過性の亢進により組織間隙や腸管などの3rdスペースに体液が移行しやすいため,循環血液量を指標にした輸液管理では,体重の過度の増加を導く。初病日からの輸液バランスと体重変化を温度板やカルテに記載し,炎症回復期の急激な循環血液量増大を未然に防ぐことが重要である。体重測定を1日1回決められた時間に行い,炎症の改善とともに水・電解質バランスを整える工夫が大切である。

【3】 輸液療法の実際 

1.ショックの初期は積極的に輸液チャレンジを行う
ショック初期は輸液チャレンジを行うことが推奨されるようになったが,輸液内容は晶質液,コロイド液のどちらでも良く,その詳細に関する十分な論証はない。敗血症性ショックの輸液負荷には,1)晶質液で行うかコロイド液で行うか,2)輸液速度はどれぐらいが良いか,3)輸液治療の到達の目標は何か,4)輸液を中断する限界点は何か,以上の4項目の検討が必要だが,その内容に関する見解には未だ多少の相違がある。Surviving sepsis campaign guidelinesでは,30分かけて500-1000 mLの晶質液,あるいは,300-500 mLのコロイド液の輸液負荷をし,平均動脈圧70 mmHgを目標に循環動態の回復をはかることを推奨し,中心静脈圧15 mmHgを超えないとしている2)。

2.アルブミン輸液を併用する
晶質液1 Lの輸液では200-300 mLレベルの循環血液量の上昇しか期待できない。このため,敗血症性ショックの治療が遷延した場合には,晶質液だけでは多量の3rdスペースを作ることとなり,全身性炎症反応の消退後の体液バランス調節に難渋することになる。血清総蛋白量の低下により,急性肺傷害が進行し,死亡率が増加するが4),アルブミン補充が死亡率を増加させるとした報告もあり,アルブミン投与の是非は,今後も慎重に検討する必要がある。急性相反応の遷延は,蛋白異化,肝臓の蛋白合成低下,消化管や細胞間質への蛋白漏出を増大させ,低アルブミン血症を合併しやすいため,初期の晶質液輸液の後は,アルブミン液を併用し,循環血液量を維持するのが現状である。HESなどの代用血漿は凝固・線溶障害を助長する可能性があり,敗血症性ショックで使用する意義は低い。

3.輸血の指標は?
 敗血症病態の輸血に対する適応は血色素量(ヘモグロビン:Hb)が7 g/dL以下である。血圧が輸液やカテコラミンにより維持されているにもかかわらず,酸素負債をかかえ,乳酸アシドーシスが進行する場合,Hbの低下を検討する必要がある。Hbが低すぎる場合は死亡率が高まるが,赤血球輸血で死亡率が高まる危険も示唆されており,Hbが8 g/dL以上あれば原則として赤血球輸血を行わない。赤血球輸血においても白血球除去が重要であり,白血球除去フィルターを用いた場合に感染症リスクが低下し,死亡率も低下する5)。新鮮凍結血漿は凝固因子を補うためのものであり,凝固異常に対してプロトロンビン時間を指標に投与する。

4.経腸栄養を中心静脈栄養に優先させる
 敗血症性ショックにあっても,ストレスを加味した十分な栄養を行うことが大切である。初期のショックが軽減した後にはbacterial translocationの阻止や腸管免疫の賦活化を考慮し,中心静脈栄養に頼らず,可能な限り経腸栄養を用いるのがよい。栄養液の胃内残留が顕著な場合は,12指腸Treitz靱帯を超えて栄養チューブを留置する。敗血症では血糖値を150 mg/dLレベルに管理することが重要であり,インスリン持続投与による厳密な血糖管理が推奨されている。

【4】 Early goal-directed therapy 
 敗血症性ショック治療開始から6時間の輸液療法は,以下の4項目を目標とするというearly goal-directed therapy(EGDT)が2001年に報告されたが,この中で重要な指針は「輸液負荷の強調」にある。
■ 平均血圧≧65 mmHg
■ 尿量≧0.5 mL/kg/h
■ 中心静脈圧 8-12 mmHg(上限:15 mmHgを超えない)
■ 混合静脈血あるいは中心静脈血酸素飽和度≧70 %
敗血症性ショック初期に,このような明確な治療目標を立てることで死亡率が低下する6)。中心静脈圧 8-12 mmHgまでの輸液負荷にもかかわらず中心静脈血酸素飽和度≧70 %を達成できない場合には,dobutamine(ドブタミン:DOB)の投与が海外では推奨されているが6),心エコーなどで心拡張能の評価ができると良い。敗血症性ショックが遷延する場合は,感染源・炎症源の究明と解決が不可欠となるが,体血管抵抗の維持と必要最低限の急速輸液負荷も不可欠である。ドブタミンは生命予後を改善するものではなく,注意点として,1)輸液量が増えること(血管拡張作用:体血管抵抗減弱),2)陽性変時作用(頻脈の持続),3)心筋細胞死の危険性(細胞内カルシウム過負荷)があり,ドブタミンによるアドレナリンβ受容体の刺激ではなく,ノルエピネフリン持続投与によるアドレナリンα1受容体作用で体血管抵抗を調節をするのが良い。このように,EGDTの個々の内容は,今後も見直されるため,施設内で救急科専門医などと相談して施設内基準を作成すると良い。

【おわりに】
 敗血症性ショックの輸液管理を概説した。敗血症治療はまさに主要臓器の集中的管理にあり,輸液管理は,呼吸・循環管理,腎機能管理,DIC管理,抗菌薬使用の根源として重要な役割を担っている。Early goal-directed therapyなどのような治療指針を各施設で定め,敗血症の診断と治療を同時に行い,敗血症の重症化を未然に防ぐことが大切となる。


【文 献】
1)Members of the American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference Committee: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20: 864–874, 1992
2)Vincent JL, et al: Fluid resuscitation in severe sepsis and septic shock: An evidence-based review. Crit Care Med 32[supple.]: S451-S454, 2004
3)松田直之: 講座「全身性炎症反応症候群とToll-like受容体シグナル -Alert Cell Strategy-」循環制御 25: 276-284, 2004
4)Mangialardi RJ, et al: Hypoproteinemia predicts acute respiratory distress syndrome development, weight gain, and death in patients with sepsis. Ibuprofen in Sepsis Study Group. Crit Care Med 28:3137-3145, 2000
5) Hebert PC, et al: Clinical outcomes following institution of the Canadian universal leukoreduction program for red blood cell transfusions. JAMA 289:1941-1949, 2003
6)Rhodes A, et al: Early goal-directed therapy: An evidence-based review. Crit Care Med 32[supple.]: S448-S450, 2004



図1.敗血症性ショックにおける動脈圧波形の特徴
A)動脈圧波形の構成要素
B)敗血症性ショックにおける動脈圧波形
C)ショックでは動脈圧波形の呼吸性変動が増強する

<解説>観血的動脈圧測定では,動脈圧の絶対値のみにこだわるのではなく,波形を評価することが大切である。動脈圧波形の立ち上がり角(dp/dt)は心収縮性を示し,波形下面積(area under curve :AUC)は心拍出量,dicrotic notchは体血管抵抗(心後負荷)を示す。敗血症性ショックでは心後負荷が減じるためdicrotic notchが消失し,循環血液量の相対的低下により心前負荷が低下するためにdp/dtが小さくなる。循環血液量低下は動脈圧波形の強い呼吸性変動として捕らえられる。


図2.体表エコー図による下大静脈径の評価


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

敗血症の定義に関する重要文献集 Dr.Marshallの論文もあります

2005年03月15日 20時26分48秒 | 論文紹介 全身性炎症反応

 敗血症の定義に関する重要文献集 

1. Members of the American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference Committee (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874

2. Marshall JC (2000) SIRS and MODS: what is their relevance to the science and practice of intensive care? Shock 14:586–589

3. Vincent J-L (1997) Dear SIRS, I'm sorry to say that I don't like you. Crit Care Med 25:372–374

4. Ramsay G, Gerlach H, Levy MM, et al (2003) An international sepsis survey: a study of doctors' knowledge and perception about sepsis. Crit Care Med 2003

5. Joint International Society and Federation of Cardiology/World Health Organization Task Force on Standardization of Clinical Nomenclature (1979) Nomenclature and criteria for diagnosis of ischemic heart disease. Circulation 59:607–609

6. Falahati A, Sharkey SW, Christensen D, et al (1999) Implementation of serum cardiac troponin I as marker for detection of acute myocardial infarction. Am Heart J 137:332–337

7. Antman EM, Grudzien C, Mitchell RN, et al (2002) Detection of unsuspected myocardial necrosis by rapid bedside assay for cardiac troponin T. Am Heart J 133:596–598

8. Puleo PR, Meyer D, Wathen C, et al (2002) Use of a rapid assay of subforms of creatine kinase MB to diagnose or rule out acute myocardial infarction. N Engl J Med 331:561–566

9. Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction (2000) Myocardial infarction redefined–-a consensus document. J Am Coll Cardiol 36:959–969

10. Taniguchi T, Koido Y, Aiboshi J, et al (1999) Change in the ratio of interleukin-6 to interleukin-10 predicts a poor outcome in patients with systemic inflammatory response syndrome. Crit Care Med 27:1262–1264

11. Ueda S, Nishio K, Minamino N, et al (1999) Increased plasma levels of adrenomedullin in patients with systemic inflammatory response syndrome. Am J Respir Crit Care Med 160:132–136

12. Stoiser B, Knapp S, Thalhammer F, et al (1998) Time course of immunological markers in patients with the systemic inflammatory response syndrome: evaluation of sCD14, sVCAM-1, sELAM-1, MIP-1 alpha and TGF-beta 2. Eur J Clin Invest 28:672–678

13. Hietaranta A, Kemppainen E, Puolakkainen P, et al (2002) Extracellular phospholipases A2 in relation to systemic inflammatory response syndrome (SIRS) and systemic complications in severe acute pancreatitis. Pancreas 18:385–391

14. Takala A, Jousela I, Olkkola KT, et al (1999) Systemic inflammatory response syndrome without systemic inflammation in acutely ill patients admitted to hospital in a medical emergency. Clin Sci (Colch) 96:287–295

15. Sablotzki A, Borgermann J, Baulig W, Friedrich I, Spillner J, Silber RE, Czeslick E (2001) Lipopolysaccharide-binding protein (LBP) and markers of acute-phase response in patients with multiple organ dysfunction syndrome (MODS) following open heart surgery. Thorac Cardiovasc Surg 49:273–8]

16. Harbarth S, Holeckova K, Froidevaux C, et al (2001) Diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis. Am J Respir Crit Care Med 164:396–340

17. Duflo F, Debon R, Monneret G, et al (2002) Alveolar and serum procalcitonin: diagnostic and prognostic value in ventilator-associated pneumonia. Anesthesiology 96:74–79

18. Angus DC, Linde-Zwirble WT, Lidicer J, et al (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310

19. Marshall JC, Cook DJ, Christou NV, et al (1995) Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med 23:1638–1652

20. Ferreira FL, Bota DP, Bross A, et al (2002) Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 286:1754–1758

21. Wilkinson JD, Pollack MM, Ruttiman, et al (1986) Outcome of pediatric patient with multiple organ system failure Crit Care Med 14:271–274

22. Proulx F, Fagan M, Farrell CA, et al (1996) Epidemiology of sepsis and multiple organ dysfunction syndrome in children. Chest 109:1033–1037

23. Doughty LA, Carcillo JA, Kaplan, et al (1996) Plasma nitrite and nitrate concentration and multiple organ failure in pediatric sepsis Crit Care Med 109:1033–1037

24. Leteutre S, Martinot A, Duhamel A, Gauvin F, Grandbastien B, Nam TV, Proulx F LaCroix J, LeClerc Fl (1999) Pediatric logistic dysfunction score. Development of a pediatric multiple organ dysfunction score: use of two strategies. Med Decis Makingaking 19:399-410

25. Carcillo JA, Fields AI (2002) Clinical practice parameters for hemodynamic support of pediatric and neonatal patients in septic shock. Crit Care Med 30:1365–1378

26. Denoix PX (1946) Enquete permanent dans les centres anticancereaux. Bull Inst Natl Hyg 1:70–75

27. Gospodarowicz M, Benedet L, Hutter RV, et al (1998) History and international developments in cancer staging. Cancer Prev Control 2:262–268

28. Renaud B, Brun-Buisson C, ICU-Bacteremia Study Group (2001) Outcomes of primary and catheter-related bacteremia. A cohort and case-control study in critically ill patients. Am J Respir Crit Care Med 163:1584–1590

29. Opal SM, Cohen J (1999) Clinical gram-positive sepsis: does it fundamentally differ from gram-negative bacterial sepsis? Crit Care Med 27:1608–1616

30. Ziegler EJ, Fisher CJ Jr, Sprung CL, et al (1991) Treatment of Gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin: a randomized, double-blind, placebo-controlled trial. N Engl J Med 324:429–436

31. Wortel CH, von der Mohlen MAM, van Deventer SJH, et al (1992) Effectiveness of a human monoclonal anti-endotoxin antibody (HA-1A) in gram-negative sepsis: relationship to endotoxin and cytokine levels. J Infect Dis 166:1367–1374

32. McCloskey RV, Straube RC, Sanders C, et al (1994) Treatment of septic shock with human monoclonal antibody HA-1A: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 121:1–5

33. Hausfater P, Garric S, Ayed SB, et al (2002) Usefulness of procalcitonin as a marker of systemic infection in emergency department patients: a prospective study. Clin Infect Dis 34:895–901

34. Damas P, Ledoux D, Nys M, et al (1992) Cytokine serum level during severe sepsis in human IL-6 as a marker of severity. Ann Surg 215:356–362

35. Panacek EA, Kaul M (1999) IL-6 as a marker of excessive TNF-alpha activity in sepsis. Sepsis 3:65–73

36. Bernard GR, Vincent J-L, Laterre PF, et al (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699–709

37. Annane D, Sébille V, Charpentier C, et al (2002) Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 288:862–871

38. Vincent J-L, Moreno R, Takala J, et al on behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine (1996) The SOFA (Sepsis-Related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med 22:707–710

39. Marshall JC, Panacek EA, Teoh L, et al (2001) Modeling organ dysfunction as a risk factor, outcome, and measure of biologic effect in sepsis. Crit Care Med 28:A46

40. Eli Lilly and Company (2001) Briefing document for XIGRIS for the treatment of severe sepsis. http:www.fda.gov/ohrms/dockets/ac/01/briefing/3797b1_01_Sponsor.htm, 6 August

41. Cook R, Cook DJ, Tilley J, et al for the Canadian Critical Care Trials Group (2001) Multiple organ dysfunction: baseline and serial component scores. Crit Care Med 29:2046–2050


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

J. Biol. Chem. 2005 280: 10040-10046

2005年03月14日 23時04分15秒 | 論文紹介 全身性炎症反応
僕と異なるデータである。培養細胞系で検証しなければない。
しかし,血管内皮細胞にはCD14がない。LPSの反応は極端に弱いか,ないはずであるので,どういうメカニズムでiNOSが上昇するのか自体が疑問である。レフリーはどういう審査をしたのだろうか?

Resistance to Endotoxic Shock in Endothelial Nitric-oxide Synthase (eNOS) Knock-out Mice
A PRO-INFLAMMATORY ROLE FOR eNOS-DERIVED NO IN VIVO*
Linda Connelly, Melanie Madhani, and Adrian J. Hobbs
From the Wolfson Institute for Biomedical Research, University College London, Cruciform Building, Gower Street, London WC1E 6AE, United Kingdom

The expression of inducible nitric-oxide synthase (iNOS) and subsequent "high-output" nitric oxide (NO) production underlies the systemic hypotension, inadequate tissue perfusion, and organ failure associated with septic shock. Therefore, modulators of iNOS expression and activity, both endogenous and exogenous, are important in determining the magnitude and time course of this condition. We have shown previously that NO from the constitutive endothelial NOS (eNOS) is necessary to obtain maximal iNOS expression and activity following exposure of murine macrophages to lipopolysaccharide (LPS). Thus, eNOS represents an important regulator of iNOS expression in vitro. Herein, we validate this hypothesis in vivo using a murine model of sepsis. A temporal reduction in iNOS expression and activity was observed in LPS-treated eNOS knock-out (KO) mice as compared with wild-type animals; this was reflected in a more stable hemodynamic profile in eNOS KO mice during endotoxaemia. Furthermore, in human umbilical vein endothelial cells, LPS leads to the activation of eNOS through phosphoinositide 3-kinase- and Akt/protein kinase B-dependent enzyme phosphorylation. These data indicate that the pathogenesis of sepsis is characterized by an initial eNOS activation, with the resultant NO acting as a co-stimulus for the expression of iNOS, and therefore highlight a novel pro-inflammatory role for eNOS.

  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

J Clin Invest. 2005 Feb;115(2):233-6

2005年03月12日 17時36分45秒 | 論文紹介 全身性炎症反応
Knock your SOCS off!

Leroith D, Nissley P.

Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Cancer Institute, NIH, Bethesda, Maryland 20892-1758, USA. derek@helix.nih.gov

The growth hormone/IGF-1-signaling (GH/IGF-1-signaling) system is involved in numerous physiological processes during normal growth and development and also in the aging process. Understanding the regulation of this system is therefore of importance to the biologist. Studies conducted over the past decade have shown that the JAK/STAT pathways are involved in GH signaling to the nucleus. More recently, evidence has been presented that a member of the SOCS family, SOCS2, is a negative regulator of GH signaling. This story began several years ago with the dramatic demonstration of gigantism in the SOCS2-knockout mouse. A more specific definition of the role of SOCS2 in GH signaling is provided in this issue of the JCI by the demonstration that the overgrowth phenotype of the SOCS2-/- mouse is dependent upon the presence of endogenous GH and that administration of GH to mice lacking both endogenous GH and SOCS2 produced excessive growth.

Figure 1
Model of JAK/STAT signaling and negative feedback by SOCS proteins. Cytokine signaling involves ligand binding and activation of the cell surface cytokine receptor. Recruitment and activation of JAK in turn facilitates phosphorylation of a STAT tyrosine residue, and subsequent STAT activation induces dimerization. This activation is tightly controlled by multiple negative regulators of phosphorylation such as phosphatases, SOCS, and PIAS. SOCS proteins are also induced by cytokine signaling and form a closed-loop, negative-feedback mechanism.

Figure 2
GH activates the GHR, which leads to multiple tissue effects, including IGF-1 gene expression. In turn, IGF-1, via IGF-1R, induces cellular effects. SOCS2 may negatively regulate these events at multiple levels. A series of papers from the Walter and Eliza Hall Institute of Medical Research, including the paper by Greenhalgh et al. in this issue of the JCI (3), provide convincing evidence that SOCS2 is a negative regulator of GH receptor signaling. Negative regulation of IGF-1R signaling by SOCS2 is more speculative.

  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

Cancer Res. 2003 Oct 1;63(19):6424-31

2005年03月12日 16時44分03秒 | 論文紹介 全身性炎症反応
Interferon regulatory factor 5, a novel mediator of cell cycle arrest and cell death.

Barnes BJ, Kellum MJ, Pinder KE, Frisancho JA, Pitha PM.

Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD 21231, USA. barnebe@jhmi.edu

We have previously shown a critical role for IFN regulatory factor 5 (IRF-5) in the innate immune response to virus infection. For the first time, we now show that although IRF-5 is a direct target of p53, its cell cycle regulatory and proapoptotic effects are p53 independent. IRF-5 inhibits both in vitro and in vivo B-cell lymphoma tumor growth in the absence of wild-type p53. The molecular mechanism(s) of IRF-5-mediated growth inhibition is associated with a G(2)-M cell cycle arrest and modulation of growth regulatory and proapoptotic genes, including p21, Bak, DAP kinase 2, and Bax. Taken together, these data indicate that although IRF-5 is a downstream target of p53, its growth inhibitory and proapoptotic effects are independent of p53.

  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

J Biol Chem. 2005 Jan 28

2005年03月12日 16時38分37秒 | 論文紹介 炎症性受容体
The interferon regulatory factor, IRF5, is a central mediator of TLR7 signaling.

Schoenemeyer A, Barnes BJ, Mancl ME, Latz E, Goutagny N, Pitha PM, Fitzgerald KA, Golenbock DT.

Department of Medicine, University of Massachusetts, Medical School, Worcester, MA 01605.

Interferon regulatory factors (IRFs) are critical components of virus-induced immune activation and type I interferon regulation. IRF-3 and IRF-7 are activated in response to a variety of viruses or following engagement of Toll-Like Receptor (TLR) 3 and TLR4 by double stranded RNA (dsRNA) and LPS, respectively. The activation of IRF-5, is much more restricted. Here we show that in contrast to IRF3 and IRF7, IRF5 is not a target of the TLR3 signaling pathway but is activated by TLR7 or TLR8 signaling. We also demonstrate that MyD88, IL-1 receptor associated kinase (IRAK) 1 and TNF-receptor associated factor (TRAF) 6 are required for the activation of IRF-5 and IRF-7 in the TLR7 signaling pathway. Moreover, ectopic expression of IRF-5 enabled type I interferon production in response to TLR7 signaling, while knockdown of IRF-5 by small interfering RNA (siRNA) reduced type I interferon induction in response to the TLR7 ligand, R-848. IRF-5 and IRF-7 therefore emerge from these studies as critical mediators of TLR7 signaling.
IRF超重要

  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

Immunol Cell Biol. 2005 Apr;83(2):196-8

2005年03月12日 16時33分34秒 | 論文紹介 炎症性受容体
Evidence of Toll-like receptor molecules on human platelets.

Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O.

The Auvergne-Loire Regional Blood Bank (EFS), Auvergne-Loire, France.

Summary Platelets are primarily involved in thrombosis and haemostasis, and they have recently been shown to have a role in innate immunity and in inflammation. We have determined the markers of innate immunity that are expressed by platelets, specifically the Toll-like receptors (TLR), originating from mixes of platelet concentrates (MPC, n = 5) between day zero and day five after blood collection. The surface membrane and intracellular expression of TLR were measured, both after and without permeabilization, using flow cytometry. We observed weak expression of TLR2, TLR4 and TLR9 on the surface of CD41(+) platelets. The expression levels of TLR4 were high (59 +/- 2.2%). Moreover, there was a significant expression of TLR2 (47.5 +/- 4.8%), TLR4 (78.8 +/- 1.3%) and TLR9 (34.2 +/- 7.5%) in the cytoplasm of CD41(+) platelets. The expression of the three receptors did not change significantly during the course of the 5 day observation period. The percentage of TLR expression is significantly modulated between activated versus non-activated platelets, both after and without permeabilization (P <0.01). Study of the expression of TLR could increase our knowledge of the level of platelet participation during an immune reaction and inflammation. In the same way as the platelet ligand/receptor pair CD40L/CD40 is, the TLR are expressed by platelets, and could serve as a link between innate and adaptive immunity.

  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする