救急一直線 特別ブログ Happy保存の法則 ー United in the World for Us ー

HP「救急一直線〜Happy保存の法則〜」は,2002年に開始され,現在はブログとして継続されています。

プロフィール (京都大学医学研究科まで 松田直之)

2006年12月31日 17時22分13秒 | プロフィール(~2010年 京大時代まで)



松 田 直 之(まつだなおゆき)
Naoyuki Matsuda MD, PhD

医師(医学博士,文部教官)


専 門: 救急医学,麻酔科学,感染症学,集中治療医学,災害医学,薬理学,外傷学,栄養学,全身性炎症反応症候群,敗血症管理,多臓器不全管理学,播種性血管内凝固,体外循環(PCPS)

出身校: 浦和市立岸中学校,埼玉県立浦和高等学校,北海道大学医学部,北海道大学大学院医学研究科


略  歴

平成 5年  3月 北海道大学医学部卒業(69期生),医師免許所得
平成 5年  4月 北海道大学医学部麻酔学講座入局
平成 6年  4月 砂川市立病院麻酔科,手術室,集中治療室勤務
平成 7年  4月 北海道大学大学院医学研究科外科系専攻 進学
平成12年  3月 北海道大学大学院修了(北海道大学博士課程第5455号,医学博士)
平成12年  4月 北海道大学大学院医学研究科救急医学分野 入局
平成12年  9月 北海道大学大学院医学研究科救急医学分野 助手
平成13年  6月 北海道大学大学院医学研究科救急医学分野医局長(平成15年3月31日 終了)
平成13年 10月 北海道大学病院救急科病棟医長,院内感染対策マネージャー (ICM)兼任(平成18年1月31日 終了)
平成14年  6月 北海道大学病院病棟感染対策プロジェクト委員,札幌感染対策ネットワーク委員 (平成18年1月31日 終了)
平成16年  4月 北海道大学医学部 講師 併任,北海道大学医学研究科 総括安全衛生管理責任者 兼任(平成18年1月31日 終了)
平成16年  6月 北海道大学病院 救急部 副部長(平成18年1月31日 終了)
平成16年  8月 北海道大学病院救急科リスクマネージャー兼任(平成18年1月31日 終了)
平成18年  2月 富山大学医学部薬理学講座 助教授
平成18年  4月 富山大学大学院 麻酔科学講座 非常勤講師
平成18年  5月 富山大学大学院 分子医科薬理学講座 助教授(所属講座改名)
平成18年  9月 富山大学附属病院 院内感染対策委員(HICT) 兼任 
平成19年  1月 富山大学附属病院 麻酔科 診療教授 兼任
平成19年  9月 京都大学大学院医学研究科 初期診療・救急医学分野 准教授
平成19年 10月 京都大学病院感染管理チーム(ICT)委員 兼任
平成22年 2月 名古屋大学大学院医学系研究科 救急・集中治療医学分野 教授
平成22年12月 名古屋大学減災連携研究センター 教授 兼任
現在に至る。


学 位 論 文

総 説「心筋細胞内情報伝達系への病態修飾」
 心室筋細胞の細胞内情報伝達を詳細に検討した原著英文論文3編をまとめ,総説(学位総説:thesis)を作成した。
松田直之:総説「心筋細胞内情報伝達への病態修飾」. 北海道大学図書館,A5455,2000


所 属 学 会

日本集中治療医学会(0950201044;学術評議員,専門医),日本麻酔科学会(07468,指導医・専門医),日本救急医学会(マ0686,専門医),日本薬理学会(978MA03:学術評議員),日本呼吸器学会(18562),日本感染症学会(10400136),日本化学療法学会(10500279),日本外科感染症学会(516-865-1679,機関誌編集委員),米国集中治療医学会(SCCM: The Society of Critical Care Medicine:00062119),米国麻酔学会(ASA: American Society of Anesthesiologists:805359),日本心臓血管麻酔学会(20031669:機関誌編集長,学術評議員,文献レビュー部門長,学術委員),日本循環制御医学会(1426, 機関誌編集委員,学術評議員),日本外傷学会(M0302),日本ペインクリニック学会(2003120301),日本臨床麻酔学会(9405609,学会誌査読委員),日本臨床救急医学会(3274D2331),日本炎症・再生医学会,日本ヒスタミン学会など

医 療 資 格

厚生労働省 医師免許証(1993年4月30日~)
厚生労働省 麻酔標榜資格(1997年3月5日~)
日本麻酔科学会 麻酔科指導医認定資格(旧資格)(1999年4月1日~2005年3月31日)
日本救急医学会認定ICLSコースディレクター資格(2003年6月1日~)
日本循環器病学会ACLSインストラクター認定資格 (2003年9月18日~)
日本感染症学会 Infection Control Doctor (ICD) 認定資格 (2004年1月1日~2013年12月31日,2009年1月1日更新)
日本麻酔科学会 麻酔科専門医認定資格(2004年4月1日~2010年3月31日~2015年3月31日)
日本麻酔科学会 麻酔科指導医認定資格(2005年4月1日~2010年3月31日~2015年3月31日)
日本集中治療医学会 集中治療専門医認定資格(2004年4月1日~2009年3月31日~2014年3月31日)
日本救急医学会 救急認定医認定資格(2005年1月1日~2009年12月31日~2014年12月31日)
日本救急医学会 救急科専門医認定資格(2005年9月1日~2009年12月31日~2014年12月31日)
共用試験実施評価機構 OSCE評価者認定資格 救急(認定番号:第09-02-07-0182号)


学 術 賞 与


1) 2002年 北海道麻酔科学会 第15回高橋賞(北海道麻酔科学会より2002年9月14日に札幌で表彰:札幌医科大学高橋長雄名誉教授賞)

2) 2003年 日本救急医学会 丸茂賞(日本救急医学会総会より2003年11月20日に東京で表彰)

3) 2004年 33th米国集中治療医学会 Annual Scientific Award
(The Society of Critical Care Medicineより2004年2月22日にオーランドで表彰)
Inhaled Gene Transfection of NF-kB Decoy Oligonucleotides Improves Lung Vascular Permeability in Septic Mice

4) 2004年 第1回和田記念賞(第8回日本ヒスタミン研究会において2004年12月11日に京都で表彰)
敗血症に合併する急性肺障害の増悪機構 ―ヒスタミン受容体発現の変化―

5) 2004年 日本集中治療医学会 優秀論文賞本賞(第32回日本集中治療医学会総会において2005年2月25日に東京で表彰)
Therapeutic effect of in vivo transfection of transcription factor decoy to NF-kB on septic lung in mice. Am J Physiol Lung Cell Mol Physiol 287: L1248-L1255,2004.

6) 2006年 35th米国集中治療医学会 Reserch Citation Award
(The Society of Critical Care Medicineより2006年1月11日にサンフランシスコで表彰)
Sepsis-induced changes in the signaling mechanisms for glucose transport 4 translocation to the membrane.

7) 2009年 第28回日本麻酔科学会山村記念賞
(日本麻酔科学会第56回学術集会において2009年8月15日に神戸で表彰)
敗血症病態における転写因子NF-kBの機能解析
The Role of Nuclear Factor κB in Pathogenesis of Severe Sepsis and Septic Shock: Possible Mechanisms of the Gene Therapy for Inflammatory Alert Cells

8) 2010年 39th米国集中治療医学会 Annual Scientific Award 受賞
(The Society of Critical Care Medicineより2010年1月12日にマイアミで表彰)
Inhaled TAK1 siRNA Improves Lung Inflammation and Apoptosis by Reduced Transcriptional Activity of NF-kB and AP-1 in Septic Mice

9)2010年 日本集中治療医学会 最優秀論文賞本賞(第37回日本集中治療医学会総会において2010年3月5日に広島で表彰)
Nuclear factor-κB decoy oligodeoxynucleotides ameliorate impaired glucose tolerance and insulin resistance in mice with cecal ligation and puncture-induced sepsis. Crit Care Med 37:2791-2799,2009.

10) 2011年 40th米国集中治療医学会 Annual Citation Award 受賞
(The Society of Critical Care Medicineより2011年1月18日にサンディエゴで表彰)
FADD siRNA reduces autophagy and apoptosis in septic mice.


学 術 評 議 員・学 術 委 員・そ の 他

1) 日本集中治療医学会 学術評議員
2005年2月28日~現在

2) 日本薬理学会 学術評議員
2005年3月22日~現在

3) 日本循環制御医学会 学術評議員
2005年6月1日~現在

4)日本外科感染症学会誌 編集委員・査読委員
2006年3月1日~現在

5) 日本心臓血管麻酔学会 学術委員 文献レビュー部門 責任者
2006年4月1日~現在

6)日本臨床麻酔学会 学会誌査読委員
2007年1月1日~現在

7) 日本集中治療医学会 Sepsis Registry委員会 委員
2007年3月4日~現在

8)日本外科感染症学 医の質・安全委員会 委員
2007年12月1日~現在

9)総合医学社「救急・集中治療」編集委員
2008年4月1日~現在

10)日本循環制御医学会誌 Circulation Control 編集委員
2008年6月1日~現在

11)日本麻酔科学会 救急・集中治療部門企画委員
2009年4月1日~現在

12) Editorial Board of the Journal of Cardiothoracic and Vascular Anesthesia
2010年1月1日~現在

13)医学図書出版社 ICUとCCU 編集同人
2010年1月1日~現在

14)日本臨床麻酔学会 評議員
2010年4月1日~現在

15)日本心臓血管麻酔学会 専門医試験問題作成委員会 委員
2010年4月1日~現在

16)日本集中治療医学会 専門医試験問題作成委員会 委員
2010年4月1日~現在

17)麻酔雑誌 LISA 編集委員
2010年4月1日~現在

18) 日本集中治療医学会 東海北陸地方会 評議員
2010年4月1日~現在

19)日本心臓血管麻酔学会 学会誌「日本心臓血管麻酔学会誌」 編集長
2010年10月1日~現在

20)日本救急医学会中部地方会 総会・学術集会 理事および幹事
2010年11月7日~現在

21)日本集中治療医学会 評議員選出委員会 委員
2011年2月27日~現在

22)日本麻酔科学会 学術集会専門部会 救急・ICUワーキンググループ 医員
2011年4月1日~現在

23)日本中毒学会西日本地方会 評議委員・幹事
2011年5月1日~現在

現在に至る。



松田直之 学術テーマ 急性期医療の拡充に向けて


1)全身性炎症反応症候群の病態と治療法の確立(SIRS,敗血症,外傷,急性膵炎,DIC,多臓器不全,ショック)(臨床・基礎)
2)急性肺損傷の病態生理と新規創薬の解明(基礎)
3)ショックおよび血管内皮細胞障害の病態生理と新規創薬の解明(基礎)
4)急性腎傷害の病態整理と新規創薬の解明(基礎)
5)敗血症病態における組織修復の促進(基礎)
6)血管炎症候群におけるcirculaing endothelial cellsの解明(臨床・基礎)
7)感染症管理学(細菌バイオグラムと抗菌薬の適正使用)(臨床)
8)急性期臨床栄養学(臨床・基礎)
9)周術期管理医学:炎症の軽減と再生の促進,炎症モニタリング(臨床)
10)本邦における敗血症治療の見直しとガイドライン作成(日本集中治療医学会Sepsis Registry委員会)
11)広域災害医療ネットワークの構築


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

人工呼吸患者さんの鎮静参考 Ramsay Score 前編 (ICU看護師さん用)

2006年12月18日 08時38分17秒 | 講義録・講演記録
How to use the Ramsay Score to assess the level of ICU Sedation

Michael A. E. Ramsay M.D.

Introduction
Virtually every patient admitted into the intensive care unit (ICU) is administered sedation therapy. The precise control of the depth of sedation is often not well managed. Patients are frequently over or under-sedated with, as a result of this lack of control, an accompanying increase in morbidity, mortality and economic cost.
Over 25 years ago, an attempt was initiated to bring the control of sedation level up to the same level of intense management as the control of hemodynamics, fluid and electrolyte balances, oxygen and metabolic parameters [1]. This concept has taken a long time to reach the critical care pathway of the majority of ICUs. However, economic issues and advances in pharmacology, have lead to a critical re-evaluation of sedation techniques, so that the goal of a heavily sedated or comatose patient for the maintenance of ventilator synchrony, is now changing to the goal, where possible, of a calm, co-operative, comfortable and communicative patient, who can interact with family members and medical staff. This change in practice pattern has resulted in shorter periods of time on mechanical ventilation support, leading to a shorter stay in the intensive care unit [2,3].

Sedation goals

The effective management of pain, anxiety and sleep (hypnosis) are the major aims of a sedation therapy regimen. The ICU environment frequently lends itself to being an unpleasant experience for the critically ill patient. The patient is exposed to numerous ominous and frightening procedures that are a necessary part of the care process. In an effort to make this clinical arena a more humane place to be treated, sedation therapy is administered. The careful and precise control of sedation therapy may lead to better control of the patient requiring mechanical ventilation support, and reduce the requirement for the use of neuromuscular blocking agents.
The desired result of a sedation regimen is to allow the patient to tolerate the physical environment, and the unpleasant procedures and therapies that are necessary in the ICU; to facilitate nursing care and management, and reduce both anxiety and stress, so that post-traumatic stress disorder does not occur after discharge from the unit. Patient safety is paramount, and the avoidance of self-extubation and inadvertent removal of catheters and other life dependency equipment is essential. Amnesia is probably another useful goal of sedation therapy, so that the patient has no recall of unpleasant events or surroundings. It has, however, been suggested that patients recovering from intensive care therapy, may have an unrealistic outlook on their recovery, if they have no recall on the severity of their illness [4].
The blunting of autonomic responses, reduced oxygen consumption and ventilator synchrony are other important goals of sedation therapy. The maintenance of a normal sleep pattern can help maintain psychological well-being, as well as preventing exhaustion and the loss of a desire to survive. Patient agitation is another common problem in the critical care unit, it may result from a specific cause such as hypoxia, under ventilation, metabolic derangement and other correctable entities that should be addressed first, but it may be the result of sleep deprivation, or pharmacological interactions, and require sedation to control [5-9].

Pain management

The effective management of pain is essential in the proper management of sedation, and results in improved patient satisfaction, a faster recovery with reduced complications [10]. This has to be the priority when assessing a patient's sedation requirements. Adequate analgesia may reduce the necessity for other sedative therapy. Nearly all patients in the ICU experience pain, whether it is the result of procedures performed on them, the disease process, catheters or tubes inserted into them, or because they are immobile and cannot shift position. If the patient is paralyzed or obtunded, they will have lost the ability to communicate the severe discomfort that they may be in, to the care team. The sequelae of severe untreated pain can be long lasting psychological effects on the patient, together with adverse haemodynamic changes. Tachycardia and hypertension, together with an increase in systemic vascular resistance, will cause an increase in myocardial oxygen consumption and demand, that may result in myocardial ischemia [10]. There may also be a deleterious effect on the immune system in an all ready compromized patient who is trying to combat a serious illness, but foremost it is inhumane not to adequately treat pain. The precise control of pain can reduce the need for deep sedation and reduce the necessity for muscle relaxants. The mainstay of analgesic therapy is still the opiates. Morphine or fentanyl are two of the narcotics most frequently administered in the ICU. They are effective pain relievers, but come with significant side effects, that may have a deleterious effect on the patient [11]. The balance between the adverse effects of the opioid analgesics, and the beneficial effect of analgesia, is a limiting factor in their use and the appropriate pain therapy delivered to these critically ill patients. These adverse effects include respiratory depression, deep sedation, narcotic bowel syndrome, pruritus, nausea, vomiting and a decreased ability to communicate. Nearly all the narcotics have active metabolites that will cause a prolongation of their effects when continually administered to patients with multi-organ system failure. This is the common profile for the intensive care patient; therefore there may be an insidious build up in the narcotic actions of these agents. Remifentanil, a relatively new, mu-receptor specific opiate that is rapidly metabolized by non-specific esterases into metabolites with very weak narcotic activity, may have a future role to play in the close control of pain in the critically ill patient [12].

Over sedation

The results of over sedation in the mechanically ventilated patient are an increased time being ventilated, an increased time in the intensive care unit, and an increased cost of care. The common effect of an increasing dose of most sedative agents is respiratory depression. This may facilitate ventilator synchrony, but will prolong the weaning process. In the extubated patient it may be associated with severe hypercarbia, hypoxia and respiratory arrest.
There is no sensitive monitor of respiratory depression in the extubated patient, who is receiving supplementary oxygen. Under these circumstances, the only parameters that correlate well with respiratory depression are respiratory pattern and level of consciousness. Respiratory rate and end-tidal carbon dioxide measured via a nasal cannula, are not reliable monitors of depressed respiration [13]. The pulse oximeter is a LATE detector of respiratory depression, when there is an increased concentration of inspired oxygen [14].

Under sedation

The untoward effects of under sedation include an increased production of endogenous catecholamines, that results in an increase in blood pressure, heart rate and myocardial oxygen consumption. The patient may be at risk for self injury from the accidental removal of the endotracheal tube or vital catheters. The mental sequelae from being awake while painful, and terrifying procedures are performed on the patient can be the development of a post-traumatic stress disorder, that may require prolonged therapy after discharge [15]. The patients’ who are unresponsive because of the administration of neuromuscular blocking drugs are most at risk [16].
Sleep deprivation is very common, and can result in the development of the typical ICU psychosis [17].

Controlled Sedation

To prevent the adverse complications of poorly controlled sedation, sedation therapy should be administered in a careful and precise manner. The depth of sedation should be clearly defined and the infusion of sedative drug precisely targeted to this clinical endpoint. If the patient is sedated to an unrousable depth, then unless clinically contraindicated, they should be brought to a level where a neurological assessment can be made every 24 hours [18]. In his manner a cerebral insult will not go undetected. By defining the sedation level and carefully controlling the sedation infusion to meet this endpoint, the dangers of over or under sedation are minimized. It will also provide for continuity of care, as all care-givers understand the required depth of sedation.
To be able to reach this goal the routine use of sedation scales is essential. The scoring system selected for use must be easily understood, used routinely and be part of the regular assessment of the ICU patient In fact sedation scoring systems should be in regular use where ever potent respiratory depressant drugs are being used.

Sedation Scoring Systems.

A sedation scoring system should be an integral component of any sedation protocol. The four most validated scoring systems include: The Ramsay Sedation Scale; The Sedation Agitation Scale; The Motor Activity Assessment Scale and for the pediatric population: The Comfort Scale [19].

  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

人工呼吸患者さんの鎮静参考 Ramsay Score 後編 (ICU看護師さん用)

2006年12月17日 15時54分03秒 | 講義録・講演記録
Controlled Sedation

To prevent the adverse complications of poorly controlled sedation, sedation therapy should be administered in a careful and precise manner. The depth of sedation should be clearly defined and the infusion of sedative drug precisely targeted to this clinical endpoint. If the patient is sedated to an unrousable depth, then unless clinically contraindicated, they should be brought to a level where a neurological assessment can be made every 24 hours [18]. In his manner a cerebral insult will not go undetected. By defining the sedation level and carefully controlling the sedation infusion to meet this endpoint, the dangers of over or under sedation are minimized. It will also provide for continuity of care, as all care-givers understand the required depth of sedation.
 To be able to reach this goal the routine use of sedation scales is essential. The scoring system selected for use must be easily understood, used routinely and be part of the regular assessment of the ICU patient In fact sedation scoring systems should be in regular use where ever potent respiratory depressant drugs are being used.

Sedation Scoring Systems.

 A sedation scoring system should be an integral component of any sedation protocol. The four most validated scoring systems include: The Ramsay Sedation Scale; The Sedation Agitation Scale; The Motor Activity Assessment Scale and for the pediatric population: The Comfort Scale [19].

 The Ramsay Sedation Scale
The Ramsay Sedation Scale (RSS, Table), was the first scale to be defined and was designed as a test of rousability. The RSS scores sedation at six different levels, according to how rousable the patient is. It is an intuitively obvious scale and therefore lends itself to universal use, not only in the ICU, but wherever sedative drugs or narcotics are given. It can be added to the pain score and be considered the sixth vital sign.

Ramsay Sedation Scale

 1 Patient is anxious and agitated or restless, or both

 2 Patient is co-operative, oriented, and tranquil

 3 Patient responds to commands only

 4 Patient exhibits brisk response to light glabellar tap or loud auditory stimulus

 5 Patient exhibits a sluggish response to light glabellar tap or loud auditory stimulus

 6 Patient exhibits no response

The RSS defines the conscious state from a level 1: the patient is anxious, agitated or restless, through the continuum of sedation to a level 6: the patient is completely unresponsive. Therefore when an assessment is to be made, the first decision to be made is to note if the patient is awake. If the patient is awake: are they anxious, agitated or restless (RSS 1) or are they calm, co-operative and communicative (RSS 2)? If the patient is asleep then a test of reusability needs to be made. If the patient responds quickly to a voice command, this is a RSS 3. If the response is slow then the patient is assigned a level 4. If the patient does not respond a stronger stimulus is applied. A louder auditory stimulus or a glabellar (between the eyebrows) tap is enacted. A brisk response to this test of rousabilty places the patient at a RSS 4. A slow or sluggish response categorizes the patient to a RSS 5. No response at all places the patient at a level 6.

 The rousability stimulus was specifically designed not to be a painful test and not to startle the patient. In fact it was planned that a sleeping patient would not be roused to a fully awakened state, so that the sleep pattern would not be disturbed.

A disadvantage of the RSS is that it relies on the ability of the patient to respond, therefore the patient who has received neuromuscular blocking drugs cannot be assessed in this manner. Also at a level 1 score, there is no further definition of the degree of agitation, and there are occasions when this may be important to record. The Sedation-Agitation Scale does take this into consideration [20]. At the deep end of the scale, a RSS 6, there is no further information as to whether the patient is in a light plane of general anesthesia or deep coma. This assessment can be made from monitoring the compressed spectral array signal from an electroencephalogram, A bispectral index score of 61.7 correlates well with a RSS of 6.

Conclusion
 Despite the ready availability of sedation scales over the last 25 years, a review of ICU practice reveals that many units still do not closely control the level of sedation in their critically ill patients. In those units where sedation scoring systems are used fewer than half the patients are at the prescribed level for more than 50% of the time. Therefore there is still an opportunity to educate the importance of the dynamics of assessment, re-assessment and adjustment in the rate of delivery of sedative. This dynamic is essential to avoid the complications associated with over and under sedation.

References

1.Ramsay MAE, Savege TM, Simpson BRJ & Goodwin R. Controlled sedation with alpaxalone-alphadolone. British Medical Journal 1974; 2: 656 - 659.
2.Brook AD, Ahrens TS, Schaiff R, Prentice D, Sherman G, Shannon W & Kollef MH. Effect of a nursing-implemented sedation protocol on the duration of mechanical ventilation. Critical Care Medicine 1999; 27: 2609 - 2615.
3.Saich C, Manji M, Dyer I & Rosser D. Effect of introducing a sedation guideline on sedative costs per bed day. British Journal of Anaesthesia 1999; 82: 792 - 793.
4.Griffiths RD, Jones C. Recovery from intensive care. British Medical Journal 1999; 319: 427 -429.
5.Crippen DW. The role of sedation in the ICU patient with pain and agitation. Critical Care Clinics 1990; 6: 369 - 393.
6.Murray K. The need for assessment of sedation in the critically ill. Nurse Critical Care 1997; 2: 297 - 302.
7.Aurell J, Elmqvist D. Sleep in the surgical intensive care unit: continuous polygraphic sleep in nine patients receiving postoperative care. British Medical Journal 1985; 290: 1029 - 1032.
8.Krachman SL, D'Alonzo GE & Criner GJ. Sleep in the intensive care unit. Chest 1995; 107: 1713 - 1720.
9.Dinges DF, Douglas SD, Hamarman S, Zaugg L & Kapoor S. Sleep deprivation and human immune function. Advances in Neuroimmunology 1995; 5: 97 - 110.
10.Lewis KS, Whipple JK, Michael KA & Quebbeman EJ. Effect of analgesic treatment on the physiological consequences of acute pain. American Journal of Hospital Pharmacists 1994; 51: 1539 - 1554.
11.Murray MJ, DeRuyter ML & Harrison BA. Opioids and benzodiazepines. Critical Care Clinics 1995; 11: 849 - 874.
12.Glass PS, Gan TJ & Howell S. A review of the pharmacokinetics and pharmacodynamics of remifentanil. Anesthesia and Analgesia 1999; 89: S7 - 14.
13.Rudolph F, Hein HAT, Marcel RJ, Swygert TH, Lynch K Ramsay KJ & Ramsay MAE. End-tidal carbon dioxide does not correlate with arterial carbon dioxide in early recovery from general anesthesia. Anesthesia & Analgesia 1998; 86: S93.
14.Hutton P & Clutton-Brock T. The benefits and pitfalls of pulse oximetry. British Medical Journal; 21: 457 - 458.
15.Coursin DR, Coursin DB. Survivors, beware of posttraumatic stress disorder: What shall we tell the Men in Black? Critical Care Medicine 1998; 26: 634 - 635.
16.Wagner BK, Zavotsky KE, Sweeney JB, Palmeri BA & Hammond JS. Patient recall of therapeutic paralysis in a surgical critical care unit, Pharmacotherapy 1998; 18: 358 - 363.
17.Kress JP, Pohlman AS, O'Connor MF & Hall JB. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. The New England Journal of Medicine 2000; 342: 1471 - 1477.
18.DeJonghe B, Cook D, Appere-de-Vecchi C, Guyatt G, Meade M, Outin H. Using and understanding sedation scoring systems: a systematic review. Intensive Care Medicine 2000; 26: 275-285.
19.Riker RR, Picard JT & Fraser GL. Prospective evaluation of the sedation -agitation scale for adult critically ill patients. Critical Care Medicine 1999; 27: 1325 - 1329.
20.De Deyne C, Struys M, Decruyenaere J, Creupelandt J, Hoste E & Colardyn F. Use of continuous bispectral EEG monitoring to assess depth of sedation in ICU patients. Intensive Care Medicine 1998; 24: 1294 - 1298.

  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする