和英特許翻訳メモ

便利そうな表現、疑問、謎、その他メモ書き。思いつきで書いてます。
拾った用例は必ずしも典型例、模範例ではありません。

契機として

2021-02-11 17:29:25 | 英語特許散策

WO2008024705
Thus, when user profile information indicates that a one or more predetermined criteria are met, the system may send an alert to the corresponding user or to another user.
[0324] このようにユーザープロファイル情報が一つ以上の判断基準が満足されることを示す場合、システムは対応するユーザー又は他のユーザーに警告を送信してよい。

For example, the system may "learn" that a player is a fan of certain sports teams. The system monitors information about upcoming events that involve those teams and, at a predetermined time, checks to see if the user has placed a bet on the event(s).
例えば、システムはユーザーが特定のスポーツチームのファンであることを知ってよい。システムは、それらのチームが含まれる今度のイベントを所定の時間にモニタし、ユーザーがそのイベントにベットしたかチェックする。

If not, the system invites the user to visit a sports book to make a bet. As another example, the system knows a user prefers $10 minimum tables and alerts the user to the opening of a seat at such a table.
ベットしていない場合は、システムはユーザーにスポーツ予約を訪れてベットするように誘う。他の例では、システムはユーザーが最低額$10のテーブルを好むことを知っていて、そのようなテーブルの席を開くようにユーザーに警告する。

As another example, the alerts can be triggered by information which is not directly related to or associated with the particular user (e.g., non-user specific information).
他の例では、特定のユーザー(例えば、ユーザー非固有の情報)に直接的には関連しない又は関係づけられていない情報を契機として、警告を発することが可能である。

For instance an alert might be triggered by a certain time or the occurrence of a certain event (e.g., the odds given on a certain sports event changing by a certain predetermined amount).
例えば、特定の時間又は特定のイベント(例えば、特定のスポーツに与えられるオッズが特定の事前に決められた額だけ変化する)を契機として、警告は発せられてよい。

WO2018213036
[0003] Cloud computing, enterprise networks, and data center networks continue to drive increased bandwidth demand of optical waveguides for metro and long haul wires, and also rack-to- rack wires within data centers to 100 Gbps and beyond.
【0003】
  クラウドコンピューティング、エンタープライズネットワーク、およびデータセンタのネットワークの存在によって、地下鉄および長距離ワイヤにおける光導波路の帯域に関する需要は高まり続けており、このことは、データセンタ内における100Gbps以上のラック間ワイヤについても同様である。

Increased bandwidth demand has motivated overall high data transmission speed on entire optical systems.
帯域に関する需要の高まりを契機として、あらゆる光学システム全体のデータ伝送速度が向上している。

WO2018144328
According to various embodiments, liquid sensor(s) may be disposed in the various passageways and/or at the upper/top and lower/bottom of the vessels 400 so as to indicate when the vessels 400 have been emptied or filled with CNG or hydraulic fluid.
種々の実施形態によれば、液体センサを様々な部分の流路及び/又は容器400の上部/頂部及び下部/底部に配置して、容器400が空になったとき、又はCNG若しくは作動流体で満たされたときにそれを表示するようにしてもよい。

Such liquid sensors may be configured to trigger close the associated gas/hydraulic fluid transfer valves to stop the process once the process has been completed.
このような液体センサを契機として、対応するガス/作動流体の移送用の弁を閉じることにより、処理完了時に処理を停止するようにしてもよい。

WO10827286
The communication device is configured to communicate with the other hearing device upon a predetermined time period. Such time period may be agreed upon by both hearing devices.
【0011】
  通信装置は、所定の期間に際し、他の補聴装置と通信するように構成される。そのような期間は、両方の補聴装置により一致させることができる。

Alternatively, the communication can be triggered upon detection of activity of the at least one sound source exceeding a predetermined activity threshold. In some aspects, the communication is triggered by said activity and initiated at a certain time thereafter.
代替的には、通信は、所定のアクティビティ閾値を超える少なくとも1つの音源のアクティビティの検出を契機として開始され得る。いくつかの態様では、通信は、前記アクティビティを契機として開始され、その後の特定の時間に行われる。

This reduces the frequency of communication, if there is no change in spatial cue information and only exchange information when suitable, thereby reducing power consumption.
これにより、空間キュー情報に変化がなく、適切な場合にのみ情報が交換される場合に、通信の頻度を減少させ、それによって消費電力が削減される。

コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

添加液

2021-02-11 13:41:49 | 英語特許散策

WO2015187868
[0043] In some embodiments, the biological sample may include an added material, such as water, deionized water, saline solutions, acidic solutions, basic solutions, detergent solutions and/or pH buffers.
【0015】
  幾つかの実施形態において、生物試料は、添加材料、例えば、水、脱イオン水、生理食塩水溶液、酸性溶液、塩基性溶液、清浄液及び/又はpH緩衝液を含有することができる。

The added material may also include reagents that will be used during the designated assay protocol to conduct the biochemical reactions. For example, added liquids may include material to conduct multiple polymerase-chain-reaction (PCR) cycles with the biological sample.
添加材料としては、さらに、指定反応分析プロトコール中に使用して生化学的反応を行わせる試薬もあり得る。例えば、添加液は、生物試料で複数のポリメラーゼ連鎖反応(PCR)サイクルを行わせる材料を含有することができる。

US10049553
The invention relates to a device for monitoring the operation of a dosage dispenser of a liquid additive in a main liquid which actuates the dosage dispenser according to suction and delivery stages,
【0001】
  本発明は、吸入及び吐出段階に従って定量ディスペンサを作動させる主液内に添加液を注入する定量ディスペンサの動作の監視装置であって、

which dosage dispenser includes a suction pipe suitable for plunging into the liquid additive contained in a container,
前記定量ディスペンサは、容器に含まれる前記添加液内に漬かるのに適した吸入管を有し、

the monitoring device including means for detecting the suction of liquid additive and means for displaying operating parameters of the dosage dispenser which are suitable for transmitting, using data provided by the detecting means, a piece of information at least when the level of liquid additive in the container reaches a lower limit, and when an untimely increase in the level occurs in the container.
前記監視装置は、前記添加液の吸入を検出する手段、並びに、少なくとも、前記容器内の添加液の高さが下限に達する時、及び前記容器内における前記高さの不時の増加が生じる時に、前記検出手段により提供されるデータを用いて、1つの情報の送信に適した前記定量ディスペンサの動作パラメータを表示させる手段を有する監視装置に関する。

コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

跳ね返った

2021-02-11 13:24:44 | 英語特許散策

US2020407048
[0063] Stitching 108 is created by inserting a threaded needle (not depicted) through fiber layers 134.
【0050】
  縫合108は、繊維層134に糸を通した針(図示せず)を挿入することによって作られる。

Fiber layers 134 are dry when stitching 108 is applied.
繊維層134は、縫合108が施されるときに乾燥している。

Pre-impregnated composite material or “prepreg” would undesirably transfer resin to the needle, affecting the insertion and removal of the needle.
予め含浸された複合材料または「プリプレグ」は、望ましくないほど樹脂を針に移し、針の挿入および除去に影響を与えることになる。

Additionally resin in a prepreg material may prevent the fibers from temporarily displacing as the needle is inserted and from and bouncing back after the needle has been removed.
さらに、プリプレグ材料内の樹脂は、針が挿入されるときに繊維が一時的に変位したり、針が除去された後で跳ね返ったりするのを妨げることができる。

Without local fiber movement, the fibers would potentially be damaged and/or have an undesirable or displaced position. Undesirable transfer of resin to the needle, or undesirable displacement of the fibers would undesirably affect the quality of the resulting product.
局所的な繊維の動きがないと、繊維は、損傷を受け、かつ/または、望ましくない位置を取ったり位置がずれたりする可能性がある。針への樹脂の望ましくない移動、または繊維の望ましくない変位は、得られる製品の品質に望ましくない影響を与えることになる。

US2020401672
[0063] FIG. 6 is a plot 660 comparing simulation results generated using an embodiment of the present invention with simulation results generated using an existing methodology. The plot 660 shows acceleration 661 versus displacement 662 of a steel tube frontal car crash zone during a frontal wall collision.
【0049】
  図6は、本発明の実施形態を使用して生成されたシミュレーション結果を既存の方法論を使用して生成したシミュレーション結果と比較するプロット660である。プロット660は、正面壁衝突の間、鋼管正面車衝突ゾーンの加速661対変位662を示す。

It is noted that the description below only references the steel tube construction mesh. FIG. 6 also shows the electro motor, drive train, and frontal wheels, of the models 666 and 665, which do not deform in the impact. The results 664 in the plot 660 were generated using a conventional 5 mm mesh-based model 665 without modifying the material properties (measurement values thereof).
下記の説明は、鋼管構造メッシュのみを言及することに留意されたい。図6は、モデル666および665の電気モータ、ドライブトレイン、および前輪も示し、これは衝撃で変形しない。プロット660の結果664は、材料特性(その測定値)を修正することなく、従来の5mmメッシュベースモデル665を使用して生成された。

The results 663 were generated using principles described herein, i.e., modifying material property measurements (amounts or levels) as a function of mesh geometric properties, for a 25 mm mesh model 666. The plot 660 shows that the results 663 and 664 are similar while the results 663 were generated using a model 666 with much larger mesh elements.
結果663は、本明細書に記述した原理を使用して、すなわち、25mmメッシュモデル666に対するメッシュ幾何学的特性の関数として材料特性測定値(量またはレベル)を修正して、生成された。プロット660は、結果663および664は同様であるが、結果663は、より大きなメッシュ要素を有するモデル666を用いて生成されたことを示す。

As such, the plot 660 shows that embodiments correct for discretization errors and allow simulations to be performed more efficiently than existing methods. As shown in FIG. 6, by employing the functionality described herein, the computational time for performing the simulation was reduced from 4100 CPU seconds (the results 664) to 147 CPU seconds (the results 663). As such, embodiments are suitable for numerous applications, such as interactive design.
したがって、プロット660は、実施形態が離散化エラーを訂正し、既存の方法よりも効率的にシミュレーションを実施することを可能にする。図6に示すように、本明細書に記載の機能を採用することにより、シミュレーションを実施するための計算時間は、4100CPU秒(結果664)から147CPU秒(結果663)に低減された。そのため、実施形態は、インタラクティブ設計などの多数の用途に適している。

The plot 660 also shows the results 667, which are what the results for the model 666 would have been without the discretization error corrections. Here the simulation would have generated a result indicating that the car would hit the wall with 50% higher force and 30% less deformation.
プロット660はまた、モデル666の結果が離散化エラー訂正なしであったという結果667を示す。ここで、シミュレーションは、車が50%強い力で壁にぶつかり、変形が30%少ないことを示す結果を生成している。

Based on these results 667, the simulation would have generated a result where the car would bounce off the wall instead of absorbing the impact. As such the effects of the present method are quite substantial.
これらの結果667に基づいて、シミュレーションは、車が衝撃を吸収する代わりに、壁から跳ね返った場合の結果を生成したことになる。そのため、本方法の効果はかなり頑丈である。

EP3429385
[0037] Several methods of measuring resiliency and/or energy return of foams (e.g., foam preforms and foam components) exist in the art. One method of measuring resiliency of foams is based on ASTM D 2632-92, which is a test for solid rubber materials.
【0032】
  発泡体(例えば、発泡体予備成形物及び発泡体部品)の弾力性及び/またはエネルギーリターンを測定するいくつかの方法が当該技術分野に存在する。発泡体の弾力性を測定する1つの方法は、固体ゴム材料の試験であるASTM D 2632-92に基づいている。

For use with foams, the test sample is prepared as described in ASTM D2632-92, but uses a sample of foam in place of the sample of solid rubber. This test uses a plunger which is dropped from a height onto a test sample while being guided by a vertical rod.
発泡体で使用するために、試験サンプルは、ASTM D2632-92に記載されているように調製されるが、固体ゴムのサンプルの代わりに発泡体のサンプルを使用する。この試験は、垂直ロッドによって案内されながらある高さから試験サンプル上に落とされるプランジャーを使用する。

The drop height is divided into 100 equal parts, and the height to which the plunger rebounds is measured using this 100 part scale, to determine the resiliency of the sample. Alternative methods which use a ball of standard weight dropped onto a sample, and which measure the rebound height of the ball to determine the resiliency of the sample can also be used.
落下高さを100等分し、プランジャーが跳ね返った高さを100刻みのスケールで測定し、サンプルの弾力性を測定します。標準重量のボールをサンプルの上に落とし、ボールの跳ね返った高さを測定してサンプルの弾力性を決定する代替方法も使用することができる。

EP2825230
One or more of the fins 70 may be provided. Preferably, the fins 70 are plate shaped and extend in a proximal direction from the septum 30 or the distal end 20' of the barrel 16.
【0027】
  1または複数のフィン70を提供することができる。フィン70はプレート状であることが好ましく、セプタム30または筒16の遠位端20から遠位方向に延びることが好ましい。

Various shapes and configurations of the fins 70 are possible. Channels 72 are formed between the fins 70 into which the suspension 14 is urged under force of movement of the plunger 26. The fins 70 reduce flow area and thus cause the suspension 14 to accelerate through the channels 72 in passing to the proximal end 40 of the needle cannula 38.
さまざまな形状および構成のフィン70が可能である。フィン70とフィン70の間には、プランジャ26が移動する力の下で懸濁液14がその中へ押し込まれる流路72が形成される。フィン70は流れ面積を低減させ、したがって、針カニューレ38の近位端40へ移る際に懸濁液14を流路72内で加速させる。

This increase in velocity helps maintain the suspension thereby minimizing separation therein. In addition, the fins 70 direct any of the suspension 14 which by-passes the proximal end 40 of the needle cannula 38 in a generally distal direction.
この速度の増大は懸濁液の維持に役立ち、それによってその中での分離を最小化する。加えて、フィン70は、針カニューレ38の近位端40を通り過ぎた懸濁液40のいずれをも全体に遠位方向に導く。

The fluid is directed to strike against, and rebound from, the septum 30 and/or the distal end 20 of the barrel 16. Upon rebounding, the suspension 14 is forced to mix with the suspension 14 that is flowing from behind.
流体は、セプタム30および/または筒16の遠位端20に衝突し、そこから跳ね返るように導かれる。跳ね返った懸濁液14は、後から流れてくる懸濁液14と強制的に混合する。

コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

極低温に冷却

2021-02-11 12:52:01 | 英語特許散策

WO2016057524
[0035] FIG. 1 includes a schematic illustration of a cleaning system 100 that may be used to clean microelectronic substrates using aerosol sprays or gas cluster jet (GCJ) sprays and
【0020】
  図1には、クリーニングシステム100の概略的な説明図を示す。クリーニングシステム100は、エアロゾルスプレーまたはガスクラスタージェット(GCJ)スプレーを用いた、マイクロ電子基板のクリーニングに使用される。

a cross section illustration 102 of the process chamber 104 where the cleaning takes place.
また図1には、クリーニングが行われる処理チャンバ104の断面図102を示す。

The aerosol spray or GCJ spray may be formed by expanding cryogenically cooled fluid mixtures into a sub-atmospheric environment in the process chamber 104.
エアロゾルスプレーまたはGCJスプレーは、処理チャンバ104内で、極低温に冷却された流体混合物をサブ大気圧環境に膨脹させることにより形成される。

As shown in FIG. 1 , one or more fluid sources 106 may provide pressurized fluid(s) to a cryogenic cooling system 108 prior to being expanded through a nozzle 1 10 in the process chamber 102.
図1に示すように、1または2以上の流体源106は、処理チャンバ102内で加圧流体がノズル110を介して膨脹する前に、極低温冷却システム108に加圧流体を提供する。

The vacuum system 1 12 may be used to maintain the sub atmospheric environment in the process chamber 104 and to remove the fluid mixture as needed.
真空システム112は、処理チャンバ104でのサブ大気環境を維持し、必要に応じて、流体混合物を除去するために使用される。

[0063] A cryogenic aerosol spray may be formed with a fluid or fluid mixture being subjected to cryogenic temperatures at or near the liquefying temperature of at least one of the fluids and then expanding the fluid mixture through the nozzle 1 10 into a low pressure environment in the process chamber 104.
【0047】
  極低温エアロゾルスプレーは、少なくとも一つの流体の液化温度、またはその近傍の極低温に晒された流体または流体混合物で形成され、次に、流体混合物は、ノズル110を介して、低圧環境の処理チャンバ104において膨脹する。

The expansion conditions and the composition of the fluid mixture may have a role in forming small liquid droplets and/or solid particles which comprise the aerosol spray that may impinge the substrate 1 18.
流体混合物の膨脹条件および組成は、微細な液滴および/または固体粒子の形成に重要であり、これらは、基板118に衝突するエアロゾルスプレーを含む。

The aerosol spray may be used to dislodge microelectronic substrate 1 18 contaminants (e.g., particles) by imparting sufficient energy from the aerosol spray (e.g., droplets, solid particles) to overcome the adhesive forces between the contaminants and the microelectronic substrate 1 18.
エアロゾルスプレーを使用して、エアロゾルスプレー(例えば液滴、固体粒子)から、汚染物質とマイクロ電子基板118の間の接着力を超える十分なエネルギーを衝突させることにより、マイクロ電子基板118の汚染物質(例えば粒子)を除去してもよい。

The momentum of the aerosol spray may play an important role in removing particles based, at least in part, on the amount of energy that may be needed to the aforementioned adhesive forces.
エアロゾルスプレーのモーメントは、少なくとも一部が前述の接着力のために必要なエネルギーの量に基づき、粒子の除去に重要な役割を果たす。

The particle removal efficiency may be optimized by producing cryogenic aerosols that may have components (e.g., droplets, crystals, etc.) of varying mass and/ or velocity.
粒子の除去効率は、質量および/または速度が変化する成分(例えば液滴、結晶など)を有する、極低温エアロゾルの形成により最適化される。汚染物質の除去に必要なモーメントは、質量および速度の関数である。

The momentum needed to dislodge the contaminants is a function of mass and velocity. The mass and velocity may be very important to overcome the strong adhesive forces between the particle and the surface of the substrate, particularly when the particle may be very small (
質量および速度は、粒子と基板表面の間の強力な接着力に打ち勝つため、極めて重要であり、特に、粒子が極めて小さい場合(100nm未満)、重要である。

US10856402
RF cavities are used to accelerate groups of charged particles towards a target. For many applications, the benefits of using cavities with superconducting internal surfaces outweigh the increased costs associated with cooling the cavities to cryogenic temperatures. The cavities are judged by their quality factor and acceleration gradient.
【0002】
  RFキャビティは、一群の荷電粒子をターゲットに向かって加速するために使用される。多くの用途において、超伝導内表面を有するキャビティを使用する利点は、キャビティを極低温に冷却することに関連して増加されたコストを上回る。キャビティは、品質係数と加速度勾配によって判断される。

Quality factor (Q0) gives the inverse of the amount of energy lost in each cycle of the system. High quality factors reduce operating costs by requiring less cryogenic cooling. The acceleration gradient of the cavity describes its ability to accelerate particles. Acceleration gradients for superconducting RF (SRF) cavities are usually given in millions of volts/meter.
品質係数(Q)は、システムの各サイクルで失われるエネルギー量の逆数を表す。高い品質係数は、極低温冷却を少なくすることで運転コストを削減する。キャビティの加速勾配は、粒子を加速する能力を表す。超伝導RF(SRF)キャビティに対する加速勾配は、通常、数百万ボルト/メートルで与えられる。

Higher gradients require fewer cavities to run a system at the same accelerating field, reducing start-up and operating costs. However, higher gradients require higher internal fields, pushing the performance limits for the superconducting interior surfaces.
勾配が高くなれば、同じ加速場でシステムを運転するために必要とするキャビティが少なくなり、初期費用および運転費用が減少する。しかしながら、より高い勾配はより高い内部磁場を必要とし、超電導内表面の性能限界を押し上げる。

US6843065
Providing refrigeration at temperatures below −50 C has many important applications, especially in industrial manufacturing and test applications. This invention relates to refrigeration systems which provide refrigeration at temperatures between −50 C and −250 C. The temperatures encompassed in this range are variously referred to as low, ultra low and cryogenic. For purposes of this Patent the term “very low” or very low temperature(*極低温)will be used to mean(*定義)the temperature range of −50 C to −250 C.

In many manufacturing processes conducted under vacuum conditions, and for a variety of reasons, the heating of a system element is required. This heating process is known as a defrost cycle. The heating elevates the temperature of the manufacturing system, enabling parts of the system to be accessed and vented to atmosphere without causing condensation of moisture(*結露)in the air. The longer the overall defrost cycle and subsequent resumption of producing very low temperatures, the lower the throughput of the manufacturing system. Enabling a quick defrost and a quick resumption of the cooling of the cryosurface in the vacuum chamber is beneficial. What is needed is a way to increase the throughput of a vacuum process.

There are many vaccuum processes which have the need for such very low temperature cooling. The chief use is to provide water vapor cryopumping(*クライオポンプ動作)for vacuum systems. The very low temperature surface captures and holds water vapor molecules at a much higher rate than they are released. The net effect is to quickly and significantly lower the chamber's water vapor partial pressure. Another application involves thermal radiation shielding. In this application large panels are cooled to very low temperatures. These cooled panels intercept(*阻止、遮断)radiant heat from vacuum chamber surfaces and heaters. This can reduce the heat load on surfaces being cooled to lower temperatures than the panels. Yet another application is the removal of heat from objects being manufactured. In some cases the object is an aluminum disc for a computer hard drive, a silicon wafer for an integrated circuit, or the material for a flat panel display. In these cases the very low temperature provides a means for removing heat from these objects more rapidly than other means, even though the object's final temperature at the end of the process step may be higher than room temperature(*室温). Further, some applications involving, hard disc drive media, silicon wafers, or flat panel display material, involve the deposition of material onto these objects. In such cases heat is released from the object as a result of the deposition and this heat must be removed while maintaining the object within prescribed temperatures. Cooling a surface like a platen is the typical means of removing heat from such objects. In all these cases it is to be understood that the evaporator surface is where the refrigerant is removing heat from these customer applications when providing cooling at very low temperatures.

WO2020254040
[0002] A "low temperature” range, as used herein(*本明細書では;定義), refers to a cryogenic temperature(*極低温)range, which starts at or about 77 degrees Kelvin (K) or lower, and down to at least 1 millikelvin (0.001 K), and in some cases as low as practicable, e.g., to 0.000001 K using presently available technology. A "low temperature” is a temperature in the cryogenic temperature range. A semiconductor or superconductor device operating in a cryogenic temperature range is referred to herein as a low temperature device (LTD). Semiconducting device, and/or superconducting devices, produce heat when operating. LTDs operating in a cryogenic temperature range also produce heat while operating, but the heat removal poses unique challenges in low temperature operations.

[0003] Most devices operating at cryogenic temperatures rely on materials(*無冠詞複数)that exhibit superconducting properties at those temperatures. Most superconductors are not good thermal conductors. To be able to remove heat from a structure(*不定冠詞;ある具体例), a material(*不定冠詞;ある具体例)has to be a good thermal conductor. For a material to be regarded as a good thermal conductor, the material must exhibit at least a threshold level of thermal conductivity. For example, a thermal conductivity of greater than a 1 Watt/(centimeter*K) at 4 Kelvin, is an acceptable threshold level of good thermal conductivity according to the illustrative embodiments.

[0004] Thermalization(*熱化)of a structure is the process and apparatus to conduct heat to or from the structure.

US9163869
FIELD OF THE INVENTION

The invention is directed to tube picking mechanisms having a tube picking compartment maintained at an ultra-low temperature(*超低温), e.g. from about −50° C. to about −135° C. or at a cryogenic temperature(*極低温)(e.g., about −140° C. to −196° C.). The tube picking mechanisms are particularly well suited for use in an automated, ultra-low temperature or cryogenic storage and retrieval system used to store and retrieve biological and chemical samples.

BACKGROUND OF THE INVENTION

Storage of biological and chemical samples is becoming widespread(*広まりつつ、普及)in biotechnological and medical industries. Many of these samples must be stored at or below freezing temperatures. Generally speaking(*概して、一般的), a regular(*通常)freezer operates from about −5° C. to −20° C., an ultra-low temperature freezer operates from about −50° C. to about −90° C. (preferably at about −80° C.) and a cryogenic freezer operates from about −140° C. to −196° C. (boiling point of liquid nitrogen). For some applications, it is advantageous to store samples below about −120° C. For purposes of this patent application, the term “ultra-low temperature” shall mean temperatures below about −50° C. and above temperatures(*それ以上の温度)generally considered to be cryogenic(*極低温の定義).

Large automated sample storage and retrieval systems that store samples within one or more ultra-low temperature (e.g., −80° C.) or cryogenic (e.g., about −140° C. to −196° C.) freezer compartments are known. Biological samples stored in these systems are often contained in sealed plastic laboratory tubes or vials having a diameter of 3.5 mm or larger. Larger tubes are sometimes called vials in the art, but both are referred herein as tubes, storage tubes or sample storage tubes. The tubes or vials are typically held in storage racks having an array of tube receptacles, for example, 384, 96, 48 or 24 tubes and having openings in the bottom of the tube receptacles. In most cases, a two-dimensional barcode containing identifying information is adhered to(貼付、貼り付け、接着、付着)the bottom of the storage tube and is able to be read through openings in the bottom of the tube storage racks.

WO2003083353
[0041] The composite overwrap in a container according to this invention preferably provides the primary structural support for the operating loads. The composite overwrap is preferably a material system comprising high-performance fibers in a resin matrix capable of cryogenic temperature service. As used herein(*本明細書では;定義) "cryogenic temperature(*極低温)" means any temperature of about -62°C (-80°F) and colder. An example of such a resin is the CTD 525 epoxy cryogenic resin. Two classes of material systems have been designed for this invention.

コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

室温またはそれ以上

2021-02-11 12:15:59 | 英語特許散策(クレーム、通信)

US10125152
Formation of the acid chloride (Va) involves treatment of (IV) with a chlorinating agent such as thionyl chloride, phosphorous pentachloride or oxalyl chloride, in a solvent such as dichloromethane, in the presence of a catalyst such as DMF, at around room temperature. In certain cases, DMF is also used as a co-solvent. Formation of the anhydride (Vb) (Z is C═O) involves treatment of (IV) with a sterically hindered acid chloride or chloroformate, such as trimethylacetyl chloride or isopropylchloroformate, in an inert solvent such as dichloromethane, in the presence of a non-nucleophilic base, such as triethyl amine or diisopropylamine at room temperature or below. Formation of the activated ester (Vc) involves treatment of (IV) with an activating reagent system such as EDCI, DCC/HOBt, HATU, BOP reagents or TBTU, in a solvent such as DMF, DMA, NMP or dichloromethane at room temperature or below(*室温またはそれ以下で)(International Journal of Pharmaceutical Sciences Review and Research (2011), 8(1), 108-119).

Alternatively, the 1,2 diamino-ethyl substructure can be prepared from a suitable aryl-alkyl ketone such as (XX) (SCHEME 5). For example, treatment of (XX) with trimethylsilyl-triflate, in ether, at about 0° C., in the presence of triethylamine provides silyl-enol ether (XXI). Treatment of (XXI) with a halogenating reagent, such as bromine, NCS, or pyridinium tribromide in an inert solvent such as dichloromethane or cyclohexane, at a temperature between −78° C. and room temperature furnishes the α-halo-ketone (XXII). (XXII) is condensed with an amine (NHR4R5) in an inert solvent such as toluene, THF, acetonitrile or DMA, at room temperature or above(*室温またはそれ以上で), to yield the α-amino-ketone (XXIII). Reductive amination of (XXIII) as described above, yields the diamino-ethyl derivative (XXIV) which is further processed (benzyl ether removal and oxidation) to provide the requisite acid (IV) as described above.

US8541484
 According to another aspect, the dehydrated hydrogel is placed in i) water, saline solution, Ringer's solution, saline solution, buffer solution, etc., or combinations thereof, ii) a humidity chamber, or iii) room temperature or elevated temperature. By being rehydrated.

According to another aspect, the dehydration is carried out by leaving the hydrogel in air, by placing the hydrogel in a vacuum at room temperature or at an elevated temperature, for example, at 40° C., above about 40° C., about 80° C., above 80° C., about 90° C., about 100° C., above 100° C., about 150° C., about 160° C., above 160° C., about 180° C., about 200° C., or above 200° C.

Cold irradiation is described in detail in U.S. Pat. No. 6,641,617, U.S. Pat. No. 6,852,772, and WO 97/29793. In the cold irradiation process, a polymer is provided at room temperature or below room temperature. Preferably, the temperature of the polymer is about 20° C. Then, the polymer is irradiated. In one embodiment of cold irradiation, the polymer may be irradiated at a high enough total dose and/or at a fast enough dose rate to generate enough heat in the polymer to result in at least a partial melting of the crystals of the polymer.

PVA-PAA gels or PVA-PAA-PEG gels can be built up in a layer-by-layer fashion by sequentially molding different concentration solution in the mold to achieve gradient properties. The gradient is thus disposed in a direction perpendicular to the direction of deposit. A hot (for example, about 90° C.) PVA-PAA-PEG mixture solution is poured into a container up to a certain thickness to form the first layer. The solution in the mold is gelled by cooling down to the room temperature or lower temperature. Upon gelling, the first layer in the container is heated to a temperature below the melting temperature with no disruption of the formed layer. Another layer of solution is added from a hot PVA-PAA-PEG mixture to the first layer to ensure adhesion of the two layers. The second layer can be formed from same or different composition of the polymer solution, or a new component can be added in the mixture. The container is again cooled down to form a layered gel structure. This procedure can be repeated to the desired number of layers or thickness. Such layer-by-layer gel formation can be applied to PVA-PEG gels or PVA cryogel as well, followed by PAA diffusion.

In another embodiment, PEG containing PVA hydrogel is prepared by starting with an aqueous PVA solution (at least about 10% (wt) PVA, above about 15% (wt) PVA, about 20% (wt) PVA, about 25% (wt) PVA, about 27% (wt) PVA, about 30% (wt) PVA, about 35% (wt) PVA, about 40% (wt) PVA, about 45% (wt) PVA, about above 50% (wt) PVA) and mixing it with a low molecular weight PEG solution at an elevated temperature (above room temperature or above 50° C.). Upon cooling down to room temperature, the mixture forms a PVA-PAA-hydrogel containing water and the non-solvent PEG. In another embodiment, the hot PVA-PAA/PEG mixture is not cooled to room temperature but instead is subjected to freeze-thaw cycles.

6). In another embodiment of a PAA-incorporated PVA cooling gel and subsequent PEG doping , a hot water-containing poly (vinyl alcohol) (PVA) solution at room temperature or higher was cast (optionally preheated) to form a PVA cooling gel. ), Cooled to 0 ° C. or lower, and melted at a temperature of 0 ° C. or higher. The total PVA content in the gel is about 10%, 15%, 20%, 25%, 27%, 30%, 35%, 40%, 45%, or their degree, any value between them, or It can be more than that. The PVA cooling gel is immersed in an aqueous solution of PAA that diffuses the PAA into the gel. Use vigorous stirring and / or high temperature to increase diffusivity. The diffusivity can also be increased by immersing the gel in a supercritical fluid. The gel can then be immersed in the PEG to extract the PEG into the gel while extracting some or all of the water.

US8420629
In some embodiments, the methods further comprise reacting the compound of Formula I with phosphoric acid to form the phosphate salt. The phosphoric acid salt of the compound of Formula I may be produced by treating a solution of the corresponding free base in an organic solvent, such as ethanol (EtOH), with a solution of phosphoric acid in an organic solvent, such as ethanol, at room temperature or at an elevated temperature (e.g., from about 60 to about 70° C.). The produced crude phosphate salt may then be further purified by recrystallization or re-slurry in an organic solvent or a mixed organic solvent system.

コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

当ブログの例文について

本ブログの「特許英語散策」等題した部分では、英語の例文を管理人の独断と偏見で収集し、適宜訳文・訳語を記載しています。 訳文等は原則として対応日本語公報をそのまま写したものです。私個人のコメント部分は(大抵)”*”を付しています。 訳語は多数の翻訳者の長年の努力の結晶ですが、誤訳、転記ミスもあると思いますのでご注意ください。