和英特許翻訳メモ

便利そうな表現、疑問、謎、その他メモ書き。思いつきで書いてます。
拾った用例は必ずしも典型例、模範例ではありません。

電圧変位

2021-12-15 21:27:58 | 英語特許散策

US10288870
[0035] Parallel plate electrostatic actuation is commonly used in MEMS devices.
【0024】
  MEMSデバイスでは、一般に、平行板静電アクチュエーションが用いられる。

The parallel plate actuator is a capacitor with one of the plates suspended by a support structure so that it is able to move when a driving voltage V is applied between the parallel plates.
平行板アクチュエータは、キャパシタであり、その板のうちの1つが支持構造によって吊るされて、平行板間に駆動電圧Vが印加されると動くようになっている。

The voltage displacement relationship is given by:
電圧変位関係は、

コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

ソース接地

2021-12-15 21:12:31 | 英語特許散策

US2019187733
[0001] This disclosure relates generally to a driver circuit including a source amplifier and an active load and,
【0001】
  技術分野
  [0001]本開示は、一般にソース接地増幅器および能動負荷を有する駆動回路に関し、

more particularly,
特に、

to a GaN driver circuit including

a source amplifier having an amplifying field effect transistor (FET) device
電界効果トランジスタ(FET)増幅器を有するソース接地増幅と、

and an active load having a self-biasing load FET device
自己バイアス方式FET負荷デバイスを有する能動負荷と、

and a resistor in the self-biasing line that provides high impedance and low capacitance.
高インピーダンスかつ低容量を提供する自己バイアスライン上の抵抗

とを含むGaN駆動回路に関する。

US8433272
[0054] FIG. 5 is a conceptual block diagram illustrating exemplary circuitry for LNA 402 of FIG. 4A.
【0035】
  図5は、図4AのLNA 402の例示的な回路を示す概念ブロック図である。

Amplifier 404 of FIG. 4A can be implemented with circuitry included in box 404 of FIG. 5, for high gain amplification of a communication signal.
図4Aの増幅器404は、通信信号の高利得増幅のために図5のボックス404に含まれた回路で実装され得る。

At the bottom of FIG. 5 is a differential amplifier 404 .
図5の下部に、差動増幅器404がある。

The differential pair amplifier 404 has two inputs, the gate of each transistor, 414 415 , which receive signals input to circuit 402 .
差動対増幅器404は、2つの入力と回路402に入力される信号を受け取る各トランジスタ414,415のゲート
とを有する。

The input transistors 414 415 receive respectfully input signals VRF+ and VRF−.
入力トランジスタ414および415は、それぞれ入力信号VRF+およびVRF-を受け取る。

For small values of VRF+ , iRF+ =gmn1 *VRF+ .
RF+が小さい値の場合、iRF+=gmn1*VRF+である。

The differential pair amplifier 404 may be used as a linear amplifier for small signals. 

差動対増幅器404は、小信号用の線形増幅器として使用され得る。

A differential pair responds to a difference mode or differential signals. 
差動対は、差動モードまたは差動信号に応答する。

Also, circuit 404 is known as a common source differential amplifier because the two input NMOS amplifiers have their sources connected together (via an inductor connected to ground in FIG. 5) and the inputs are their gates. 
また、回路404は2つの入力NMOS増幅器がそのソースを(図5のグラウンドに接続されたインダクタを介して)互いに接続させており、入力がそのゲートであるので、ソース接地差動増幅器として知られている。

US10340866
[0014] FIG. 5 illustrates a non-limiting example of a single-ended TIA with alternating current (AC) coupling between a common source input stage and a source follower.
【図5】[0013]ソース接地入力段とソースフォロワとの間に交流電流(AC)結合を有するシングルエンド型TIAの非限定的な例を図示する。

コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

Transistors Explained - How transistors work

2021-12-15 18:17:12 | ビデオ

聞きやすくて分かり易いトランジスタの説明。

8:50 "carried out some experiments to discover the electron(*代表、「電子というもの」), and also prove they(*意識は複数のelectrons)flowed in the opposite direction" 

必ずしも前言の数に縛られる必要はない。

コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

周波数範囲

2021-12-15 16:49:38 | 英語特許散策

US9838046
Transceiver circuitry 38 may include transmitters 48 and receivers 50. There may be, for example, a respective transmitter 48 and a respective receiver 50 associated with each of a plurality of cellular telephone communications bands. Consider, as an example, LTE Band 13. To support communications in E-UTRA (LTE) Band 13, one of transmitters 48 (e.g., transmitter TX of FIG. 3) may transmit radio-frequency signals in the uplink frequency range of 777 MHz to 787 MHz and one of receivers 50 (e.g., receiver RX of FIG. 3) may receive radio-frequency signals in the downlink frequency range of 746 MHz to 756 MHz. 

US10601264
5. The method as claimed in claim 1, wherein the frequency range is 100 to 1,000 kHz.

US8847617
As shown in FIG. 5B, antenna probe 18 may, if desired, be formed from an open-ended waveguide (i.e., a waveguide having a body such as body 220 with an open end such as open end 222). Open-ended waveguides may operate in frequency ranges such as 3-14 GHz or frequencies above 14 GHz or below 3 GHz, as examples. The antennas that may be used for forming one or more antennas in antenna probe 18 include dipoles, loops, horns, coils, open-ended waveguides, etc.

Tester 12 may then be used to make S11 and/or S21 measurements. Illustrative S11 measurements made in a frequency range of 0.7 GHz to 2.7 GHz on structures of the type shown in FIG. 11A are shown in FIG. 11B (plotted on a Smith chart). 

US9484961
For example, the 850 MHz band may be associated with frequency range 824-849 MHz and the 2500 MHz band may be associated with frequency range 2500-2570 MHz.

US9251455
In some embodiments, the tag device 110 and reader device 160 include one or more wireless interfaces so as to communicate with each other using a radio-frequency ID (RFID) protocol. For example, the tag device 110 and reader device 160 can communicate with each other in accordance with a Gen2 ultra-high frequency (UHF) RFID protocol, under which the system 100 operates in a frequency range of 860 MHz to 960 MHz. Further, under the Gen2 UHF RFID protocol, the system 100 may be a passive-backscatter system in which the reader device 160 transmits information to the tag device 110 by modulating an RF signal in the 860 MHz to 960 MHz frequency range.

US9925034
To reject unintentional muscle movements while retaining intended motions, the parameters of the exemplified control law (Equation 9) are optimized through numerical simulation. For example, this optimization minimizes the average displacement magnitude of the stabilized object 504 (Y, Equation 10) over the unintentional muscle movement frequency range of 3-7 Hz, while varying the controller gains K1, K2, K3

US20200004340
2. The method of claim 1, wherein the actuator comprises a distributed mode actuator and the frequency range of the coupled system is between 150 Hz to 350 Hz.

US9811164
In more detail, radio element 112 can be configured to emit microwave radiation in a 1 GHz to 300 GHz range, a 3 GHz to 100 GHz range, and narrower bands, such as 57 GHz to 63 GHz. This frequency range affects radar antenna 114's ability to receive interactions, such as to track locations of two or more targets to a resolution of about two to about 25 millimeters. Radio element 112 can be configured, along with other entities of radar system 104, to have a relatively fast update rate, which can aid in resolution of the interactions.

US8527283
Teachings discussed herein are directed to a cost-effective method and system for artificial bandwidth extension. According to such teachings, a narrow-band digital audio signal is received. The narrow-band digital audio signal may be a signal received via a mobile station in a cellular network, for example, and the narrow-band digital audio signal may include speech in the frequency range of 300-3400 Hz. Artificial bandwidth extension techniques are implemented to spread out the spectrum of the digital audio signal to include low-band frequencies such as 100-300 Hz and high-band frequencies such as 3400-8000 Hz. By utilizing artificial bandwidth extension to spread the spectrum to include low-band and high-band frequencies, a more natural-sounding digital audio signal is created that is more pleasing to a user of a mobile station implementing the technique.

A straight-forward approach to restore the low-band signal is then to counteract the effect of this channel transfer function within the range from 0 to 300 Hz. A simple way to do this is to use a low-band spectrum estimator 511 to estimate the channel transfer function in the frequency range from 0 to 300 Hz from available data, obtain its inverse, and use the inverse to boost the spectral envelope of the up-sampled narrow-band speech. 

US9977122
The system 100 may be configured as described herein to provide a radar operating frequency range between about 15.7 gigahertz (GHz) and about 17.3 GHz and a communications operating frequency range between about 14.4 GI-Hz and about 15.35 GHz.

US8292214
The test results displayed in FIGS. 11 and 12 indicate that the use of the dampening foam 68 (FIG. 6) provides effective vibration damping represented by good transmission loss performance, particularly in the frequency range between 600 to 2,000 Hz where shear deformation was the dominant wave propagation mechanism. The use of dampening particles 66 also provided good vibration damping illustrated by improved transmission loss performance compared to the baseline panel 4. It was also found that increasing the depth of the core 26 had a somewhat adverse impact on transmission loss performance. Increasing facesheet thickness was found to improve transmission loss performance but moved the coincidence plateau of the panel lower, centered at 1600 Hz, resulting in a reduction of the transmission loss. The use of damping particles was found to provide significantly higher damping loss factor compared to the baseline panel 4, in the frequency range between 500 and 1,600 Hz.

US8081118
5. The antenna radiator assembly of claim 1, wherein said foam substrate comprises a loss tangent of no more than about 0.005 over a frequency range between about 11 GHz to about 33 GHz.

US8820477
FIG. 1 illustrates one embodiment of an acoustic panel 10 for effectively attenuating sound over a relatively wide range of frequencies and sound pressure levels. One side of the panel 10 is exposed to the sound, hereinafter sometimes referred to as acoustic waves 44. The acoustic panel 10 includes a single layer of cellular hexagonal core 12 (or other type of core to provide a local air column) having a first side 14, a second opposite side 16, and a plurality of individual cells 18 extending therebetween. The sizes of cells 18 can be selected to tune core 12 to acoustic waves having a particular frequency or range of frequencies. For example, and without limitation, the core 12 may be tuned to a frequency range of between approximately 800 Hz and 4,000 Hz

US7064668
For this specific implementation example, it should be noted that the data sheet for ECCOSORB® FGM 40 absorber material has a general suggested frequency range of 4 to 10 GHz. However, it has been discovered that ECCOSORB® FGM 40 absorber material provides sufficient attenuation generally for proper operation at the 13.56 MHz operating frequency of RFID device 102 for this example.

US6955324
For example, RF commands can be transmitted to the RF transceiver to direct the device to land, to enable or disable the microphone 930 and camera, or to indicate other directives. In one presently preferred embodiment, a low-power RF transceiver in the 902–928 MHz or 2.4 GHz frequency range is desirable, similar to the frequency range used in cordless telephones. In addition to or instead of the RF transceiver 928, the device also can receive commands through modulated laser signals 940 received via an optical interface 942. The optical interface 942 is coupled with the processor 902 allowing the processor to respond to directives received via the optical interface 940.

1) a frequency range of 10 Hz to 20 Hz

2) a frequency range of 10 to 20 Hz

3) a frequency range of 10-20 Hz

4) a frequency range 10-20 Hz

5) a frequency range from 10 to 20 Hz

6) a frequency range between 10 to 20 Hz

7) a frequency range between 10 Hz to 20 Hz

8) a frequency range between 10 and 20 Hz

9) a frequency range between 10 Hz and 20 Hz

10) a frequency range of between 10 Hz and 20 Hz

11) a 10-20 Hz frequency range

 

コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

低周波帯

2021-12-15 11:53:31 | 英語特許散策

US202330216
The frequency domain metrics can comprise power of the low-frequency band (LF power), the power of the high-frequency band (HF power), and the ratio of the LF Power to the HF power (LF/HF ratio).
周波数ドメインメトリックは、低周波帯の電力(LF電力)、高周波帯の電力(HF電力)、及びLF電力のHF電力に対する比(LF/HF比)を含み得る。

The Non-linear metrics can comprise approximate entropy (ApEn) which can measure the regularity and complexity of a time series.
非線形メトリックは近似エントロピー(ApEn)を含み得、これは、時系列の規則性及び複雑さを測定できる。

The HRV metrics can be computed over short durations (a few minutes) and/or long durations (24 hours).
HRVメトリックは、短時間(数分)及び/又は長期間(24時間)にわたって計算することができる。

コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

当ブログの例文について

本ブログの「特許英語散策」等題した部分では、英語の例文を管理人の独断と偏見で収集し、適宜訳文・訳語を記載しています。 訳文等は原則として対応日本語公報をそのまま写したものです。私個人のコメント部分は(大抵)”*”を付しています。 訳語は多数の翻訳者の長年の努力の結晶ですが、誤訳、転記ミスもあると思いますのでご注意ください。