物理と数学:老人のつぶやき

物理とか数学とかに関した、気ままな話題とか日常の生活で思ったことや感じたこと、自分がおもしろく思ったことを綴る。

ハイゼンベルクが日本にやってきたころ

2024-04-01 12:51:31 | 物理学
20人くらいドイツに関係した科学者について昔ある雑誌に書いた記事から転載したブログのうちでハイゼンベルクのブログが読まれていたので、先ほど読み直してかなり加筆修正をした。

昔、ハイゼンべルクが日本にやって来たとき、講演を聞いたと書いた。そのときの彼の講演の後で新聞記者が私の先生の一人のYさんにその内容を尋ねていたのを覚えている。H大学の大学会館のかなり広い部屋でその講演があった。

それは1967年だから私は博士課程の最上級生であったが、あまり話の中身は理解できなかった。それがいつごろであったか。もし秋であったのなら、私の学位論文の研究がだいぶん煮詰まってきて、まとまりつつあった時期だったろうか。

それがもし5月ころなら、まだ研究にとりかかって間がない頃であり、研究のために必要なkinematicsを習得しようとして四苦八苦していた時期になる。いずれの時期だったかは覚えていない。Goldberger-Watsonの両氏が書かれた本である”Collision Theory”のphoto-productionのプロセスに必要なkinematicsは、私には結構難しかったが、懸命にそれを習得しようとしていた。

その論文には南部陽一郎さんはあまり関係していないといわれるが、有名な南部(Nambu)さんの名前が入った通称CGLN(著者名のChew-Goldberger-Low-Nambuの頭文字をとった略称)と言われた論文の第2論文のkinematicsをCGLNの一人のGoldbergerが解説した本を読んでいた。

原論文のCGLNにもちろんそのkinematicsの要旨も出ているのだが、私には論文からその仕組みを読み取る力はなかった。

私がいまこれほどまでに異常にLevi-Civitaの記号に執着する元は実はphoto-pi-productionの研究を過去にしたことがあったのが、その理由である。

もっともそれは今関心のある、3次元のLevi-Civitaの記号ではなく、4次元のLevi-Civitaの記号とその縮約公式が研究には必要だったのだが。

参考までにいうと、Levi-Civitaの記号\epsilon _{ijk}はベクトル解析のベクトル代数を理解するときにとても役立つ記号である。

ベクトル代数やベクトル解析でこのLevi-Civitaの記号の有用性を知れば、ベクトル解析の面倒さ、不可解さの一部は必ず晴れるという魔法の杖のようなものである。

もっともこれになじむのはなかなか難しいかもしれない。私にとっても、もう何十年も昔のことだが、Bohmの『量子論』(みすず書房)の本にでていたLevi-Civitaの記号を見たときが、この記号を見た、生まれてはじめての機会だったと思うが、とてつもなく難しいものに思えた。

これはパウリ行列の間に成り立つ関係を示すために用いられたものであったのだが。

(2024.4.2付記) 
私のLevi-Civitaの記号との出会いは上にBohmの『量子論』であったと書いたが、その英語版を今見てみるとはパウリ行列の間に成り立つ関係はLevi-Civitaの記号を使って書かれていない。それでこれは私の記憶違いらしい。

どうも有名なSchweberの場の量子論のテクストの比較的はじめの方の記述を見たのをまちがって思い込んでしまったらしい。いずれにしても、これは私にはわからんなと思ったことだけは事実である。これは単に記号だけのことではあるのだが、私はギリシャ文字に心理的に弱いらしいことがわかる。

もっとも、私はSchweberの場の量子論の本を詳しく勉強したことがない。結局のところ、Bohmうんぬんという、上の記述はまちがっているのだろうが、あえてそのままにしておく。人の書くことをそのまま簡単に信用するなという教訓にしたいためである。