ラットは今日も、きみのために。

マウスも研究者も頑張っています。
医学研究関連記事の新聞紙面から切り抜き
再生医療、薬理学、生理学、神経科学、創薬

最強の藻でCO2減らせ、開発に本腰=中部電力

2008年05月29日 | 生きもの色々
 最強の藻を探せ-。中部電力が、クロレラなど微細藻類の光合成能力を生かし、二酸化炭素(CO2)を削減する技術の開発に乗り出した。火力発電所から出る排ガスを吸収させ、成長した藻をバイオ燃料として火力発電で利用する考え。まずは高濃度と高温に耐えられる種類を見つけようと、地道な研究を続けている。

 「これですよ」。中電の電力技術研究所(名古屋市緑区)で、田村英生主任が正門前のガードレールを指さした。くぼみの辺りに点在する濃緑色。カビのような生き物が微細藻類だ。「雨が降って増えたんでしょう。クロレラもいるかも」。早速、歯ブラシでこすって採集した。

 主に水中で生きる微細藻類は陸上の植物と比べ、光合成が活発でCO2吸収が速い。ただ、一般的に火力発電から排出されるCO2の濃度は7-10%、排ガス温度は50-100度といい、利用には「厳しい環境で死なないことが条件」となる。

 そこで担当者は温泉地に足を運び、湯のかかった石に付着する藻を持ち帰ることも。現在、実験室で十数種類の光合成能力を調べている。

 電力業界で微細藻類のCO2吸収が注目されたのは1990年代。コスト面などの課題から取り組みはいったん下火になったが、中電では温暖化防止に向けた機運の高まりを受け、研究の復活を決めた。

 「なるべく早く実用化のめどを付けたい」と意欲を燃やす田村主任。強い藻の絞り込みができれば、来年度にも大型プラントで培養実験する計画だ。遺伝子組み換え技術による吸収量の向上も検討していく。

 ヤナギ、タブノキなどの大規模植林でCO2を吸収する研究も並行して進めており、こちらも火力発電のバイオ燃料に使う循環システムを目指す。

 中電は4月、電技研に田村主任ら精鋭5人を集め、「CO2削減技術グループ」を発足させた。「研究成果を、CO2削減のより有効な投資に生かしたい」とチームリーダーの西川洋行研究主査。回収したCO2を地中などに隔離する固定化技術にも取り組む方針だ。

 (後藤隆行)

 【微細藻類】 大きさは0・01ミリ程度。学術的に確認されているだけで数千種類に及ぶ。健康食品に使われるクロレラやドナリエラなどが知られている。

[中日新聞 2008年05月27日]
http://www.chunichi.co.jp/article/economics/news/CK2008052902013269.html

考えるだけでロボットアームを操作、サルで実験成功=ピッツバーグ大学

2008年05月29日 | 心のしくみ
【5月29日 AFP】サルの脳に電極をとりつけ思考するだけでロボットアームを操作させることに成功した米ピッツバーグ大学(University of Pittsburgh)の研究チームの実験結果が28日、英科学誌ネイチャー(Nature)に発表された。

 研究チームは、サルの腕を動かせないように固定し、脳にロボットアーム操作用の電極針を取り付けたところ、このサルは数日間で、肩に取り付けられたロボットアームを操作し、アームの先端で食べ物をつかみ口元に運ぶ動作を習得したという。

 研究を主導したアンドリュー・シュワルツ(Andrew Schwartz)ピッツバーグ大教授によると、ロボットアームの操作は脳の制御のみによって行われたという。

 中枢神経系学を専門とするカナダ・モントリオール大学(University of Montreal)のジョン・カラスカ(John Kalaska)氏は、脳の働きのみで人工アームを操作するいわゆる「ブレーン・マシン・インターフェース(BMI)」による三次元動作(今回の実験の場合は食べ物を口元に運ぶ動作)の実証結果が発表されたのは、今回が初めての事例だと指摘する。

 ピッツバーグ大の実験結果を人間にも応用できれば、脳とロボットアームを直接つなぐことで、神経系の損傷で四肢などが不自由な人々にも応用が可能になるとの期待が高まっている。

 こうした期待をうけ、シュワルツ教授らの研究チームはロボットアームをさらに改良すべく研究を進めている。(c)AFP/Marlowe Hood

[AFP BB News 2008年05月29日]
http://www.afpbb.com/article/environment-science-it/science-technology/2397750/2977663



【Monkeys Think, Moving Artificial Arm as Own】

By BENEDICT CAREY
Published: May 29, 2008
Two monkeys with tiny sensors in their brains have learned to control a mechanical arm with just their thoughts, using it to reach for and grab food and even to adjust for the size and stickiness of morsels when necessary, scientists reported on Wednesday.

The report, released online by the journal Nature, is the most striking demonstration to date of brain-machine interface technology. Scientists expect that technology will eventually allow people with spinal cord injuries and other paralyzing conditions to gain more control over their lives.

The findings suggest that brain-controlled prosthetics, while not practical, are at least technically within reach.

In previous studies, researchers showed that humans who had been paralyzed for years could learn to control a cursor on a computer screen with their brain waves and that nonhuman primates could use their thoughts to move a mechanical arm, a robotic hand or a robot on a treadmill.

The new experiment goes a step further. In it, the monkeys’ brains seem to have adopted the mechanical appendage as their own, refining its movement as it interacted with real objects in real time. The monkeys had their own arms gently restrained while they learned to use the added one.

Experts not involved with the study said the findings were likely to accelerate interest in human testing, especially given the need to treat head and spinal injuries in veterans returning from Iraq and Afghanistan.

“This study really pulls together all the pieces from earlier work and provides a clear demonstration of what’s possible,” said Dr. William Heetderks , director of the extramural science program at the National Institute of Biomedical Imaging and Bioengineering. Dr. John P. Donoghue, director of the Institute of Brain Science at Brown University, said the new report was “important because it’s the most comprehensive study showing how an animal interacts with complex objects, using only brain activity.”

The researchers, from the University of Pittsburgh and Carnegie Mellon University, used monkeys partly because of their anatomical similarities to humans and partly because they are quick learners.

In the experiment, two macaques first used a joystick to gain a feel for the arm, which had shoulder joints, an elbow and a grasping claw with two mechanical fingers.

Then, just beneath the monkeys’ skulls, the scientists implanted a grid about the size of a large freckle. It sat on the motor cortex, over a patch of cells known to signal arm and hand movements. The grid held 100 tiny electrodes, each connecting to a single neuron, its wires running out of the brain and to a computer.

The computer was programmed to analyze the collective firing of these 100 motor neurons, translate that sum into an electronic command and send it instantaneously to the arm, which was mounted flush with the left shoulder.

The scientists used the computer to help the monkeys move the arm at first, essentially teaching them with biofeedback.

After several days, the monkeys needed no help. They sat stationary in a chair, repeatedly manipulating the arm with their brain to reach out and grab grapes, marshmallows and other nuggets dangled in front of them. The snacks reached the mouths about two-thirds of the time — an impressive rate, compared with earlier work.

The monkeys learned to hold the grip open on approaching the food, close it just enough to hold the food and gradually loosen the grip when feeding.

On several occasions, a monkey kept its claw open on the way back, with the food stuck to one finger. At other times, a monkey moved the arm to lick the fingers clean or to push a bit of food into its mouth while ignoring a newly presented morsel.

The animals were apparently freelancing, discovering new uses for the arm, showing “displays of embodiment that would never be seen in a virtual environment,” the researchers wrote.

“In the real world, things don’t work as expected,” said the senior author of the paper, Dr. Andrew Schwartz, a professor of neurobiology at the University of Pittsburgh. “The marshmallow sticks to your hand or the food slips, and you can’t program a computer to anticipate all of that.

“But the monkeys’ brains adjusted. They were licking the marshmallow off the prosthetic gripper, pushing food into their mouth, as if it were their own hand.”

The co-authors were Meel Velliste, Sagi Perel, M. Chance Spalding and Andrew Whitford.

Scientists have to clear several hurdles before this technology becomes practical, experts said. Implantable electrode grids do not generally last more than a period of months, for reasons that remain unclear.

The equipment to read and transmit the signal can be cumbersome and in need of continual monitoring and recalibrating. And no one has yet demonstrated a workable wireless system that would eliminate the need for connections through the scalp.

Yet Dr. Schwartz’s team, Dr. Donoghue’s group and others are working on all of the problems, and the two macaques’ rapid learning curve in taking ownership of a foreign limb gives scientists confidence that the main obstacles are technical and, thus, negotiable.

In an editorial accompanying the Nature study, Dr. John F. Kalaska, a neuroscientist at the University of Montreal, argued that after such bugs had been worked out, scientists might even discover areas of the cortex that allow more intimate, subtle control of prosthetic devices.

Such systems, Dr. Kalaska wrote, “would allow patients with severe motor deficits to interact and communicate with the world not only by the moment-to-moment control of the motion of robotic devices, but also in a more natural and intuitive manner that reflects their overall goals, needs and preferences.”

[New York Times 2008年05月29日]
http://www.nytimes.com/2008/05/29/science/29brain.html?_r=1&ref=science&oref=slogin