日本語の「は」と「が」について。

象は鼻が長い=∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
とりあえず「三上文法」を「批判」します。

(461)「含意の定義(Df.→)」について。

2020-01-14 19:19:02 | 論理

(01)
① ~P∨Q
①いふ「式」は、
①(~Pと、Qが、同時にである。)といふことは有っても、
①(~Pと、Qが、同時にである。)といふことは無い
といふ「意味」である。
従って、
(01)により、
(02)
① ~P∨Q
に於いて、
② ~Pが「偽」であるならば、 Qは「偽」ではなく、「真」であり、
③  Qが「偽」であるならば、~Pが「偽」ではなく、「真」である。
然るに
(03)
②   Pが「真」であるならば、~Pは「偽」であり、
③ ~Qが「真」であるならば、 Qが「偽」である。
従って、
(01)(02)(03)により、
(04)
① ~P∨Q
に於いて、
②  Pが「真」であるならば、 Qが「真」であり、
③ ~Qが「真」であるならば、~Pが「真」である。
(05)
① ~(P&~Q)
といふ「式」は、
①(Pと、~Qが、同時にである。)といふことは有っても、
①(Pと、~Qが、同時にである。)といふことは無い
といふ「意味」である。
従って、
(05)により、
(06)
① ~(P&~Q)
に於いて、
②  Pが「真」であるならば、~Qは「真」ではなく、「偽」であり、
③ ~Qが「真」であるならば、 Pは「真」ではなく、「偽」である。
然るに、
(07)
② ~Qが「偽」であるならば、 Qが「真」であり、
③   Pが「偽」であるならば、~Pが「真」である。
従って、
(05)(06)(07)により、
(08)
① ~(P&~Q)
に於いて、
②  Pが「真」であるならば、 Qが「真」であり、
③ ~Qが「真」であるならば、~Pが「真」である。
従って、
(04)(08)により、
(09)
①  ~P∨ Q
① ~(P&~Q)
に於いて、両方とも、
②  Pが「真」であるならば、 Qが「真」であり、
③ ~Qが「真」であるならば、~Pが「真」である。
然るに、
(10)
③  Pが「真」であるならば、 Qが「真」であり、
④ ~Qが「真」であるならば、~Pが「真」である。
といふことは、要するに、
③ Pであるならば、Qであり、
④ Qでないならば、Pでない。
といふ、ことである。
然るに、
(11)
③ Pであるならば、Qである。
④ Qでないならば、Pでない。
に於いて、両者は、「対偶(Contraposition)」であるため、
③=④ である。
従って、
(09)(10)(11)により、
(12)
「番号」を付け直すと、
①     P→ Q ≡Pであるならば、Qである。
②  ~P∨ Q ≡Pでないか、  Qである。
③ ~(P&~Q)≡Pであって、  Qでない。といふことはない。
に於いて、
①=②=③ であるが、特に、
  ②=③ は、「ド・モルガンの法則」でもある。
然るに、
(13)
(ⅰ)P→Q├ ~P∨Q 
1  (1)    P→Q   A
 2 (2) ~(~P∨Q)  A
  3(3)   ~P     A
  3(4)   ~P∨Q   3∨I
 23(5) ~(~P∨Q)&
        (~P∨Q)  24&I
 2 (6)  ~~P     35RAA
 2 (7)    P     6DN
12 (8)      Q   17MPP
12 (9)   ~P∨Q   8∨I
12 (ア) ~(~P∨Q)&
        (~P∨Q)  29&I
1  (イ)~~(~P∨Q)  2アRAA
1  (ウ)   ~P∨Q   イDN
(ⅱ)~P∨Q├ P→Q
1     (1) ~P∨ Q   A
 2    (2)  P&~Q   A
  3   (3) ~P      A
 2    (4)  P      2&E
 23   (5) ~P& P   34&I
  3   (6)~(P&~Q)  25RAA
   7  (7)     Q   A
 2    (8)    ~Q   A
 2 7  (9)  Q&~Q   78&I
   7  (ア)~(P&~Q)  29RAA
1     (イ)~(P&~Q)  1367ア∨E
    ウ (ウ)  P      A
     エ(エ)    ~Q   A
    ウエ(オ)  P&~Q   エオ&I
1   ウエ(カ)~(P&~Q)&
          (P&~Q)  イオ&I
1   ウ (キ)   ~~Q   7カRAA
1   ウ (ク)     Q   キDN
1     (ケ)  P→ Q   ウクCP
(ⅲ)P→Q├ ~(P&~Q)
    1 (1)  P→ Q  A
     2(2)  P&~Q  A
     2(3)  P     2&E
     2(4)    ~Q  2&E
    12(5)     Q  13MPP
    12(6)  ~Q&Q  45&I
    1 (7)~(P&~Q) 26RAA
(ⅳ)~(P&~Q)├ P→Q
   1  (1)~(P&~Q)  A
    2 (2)  P      A
     3(3)    ~Q   A
    23(4)  P&~Q   23&I
   123(5)~(P&~Q)&
          (P&~Q)  14&I
   12 (6)   ~~Q   35RAA
   12 (7)     Q   6DN
   1  (8)  P→ Q   27CP
従って、
(13)により、
(14)
果たして、「命題計算」の「結果」としても、
①     P→ Q
②  ~P∨ Q 
③ ~(P&~Q)
①=②=③ である
従って、
(12)(14)により、
(15)
①   P→Q
② ~P∨Q
に於いて、
P=P&~P
といふ「代入」を行ふと、
①  (P&~P)→Q
② ~(P&~P)∨Q
に於いて、
①=② である。
然るに、
(16)
(ⅱ)
1  (1)~(P&~P)∨Q A
 2 (2)~(P&~P)   A
 2 (3) ~P∨ P    2ド・モルガンの法則
 2 (4) ~P∨ P ∨Q 3∨I
  5(5)        Q A
  5(6)     P ∨Q 5∨I
  5(7) ~P∨ P ∨Q 6∨I
1  (8) ~P∨ P ∨Q 12457∨E
(ⅲ)
1  (1) ~P∨ P ∨Q A
1  (2)(~P∨ P)∨Q 1結合法則
 3 (3)(~P∨ P)   A
 3 (4)~(P&~P)   2ド・モルガンの法則
 3 (5)~(P&~P)∨Q 4∨I
  6(6)        Q A
  6(7)~(P&~P)∨Q 5∨I
1  (8)~(P&~P)∨Q 23567∨E
従って、
(16)により、
(17)
② ~(P&~P)∨Q
③   ~P∨ P ∨Q 
に於いて、
②=③ である。
従って、
(15)(16)(17)により、
(18)
①  (P&~P)→Q
② ~(P&~P)∨Q
③   ~P∨ P ∨Q
に於いて、
①=②=③ である。
然るに、
(19)
③ ~P∨P∨Q
といふ「式」は、
③(~Pと、Pと、Qが、同時に、真である。)といふことは有っても、
③(~Pと、Pと、Qが、同時に、偽である。)といふことは無い。
といふ「意味」である。
従って、
(19)により、
(20)
③ ~P∨P∨Q
に於いて、
~P≡Pでない。 が「偽」であり、
 P≡Pである。 も「偽」であるならば、
 Q≡Qである。 は「偽」ではなく、「真」である。
然るに、
(21)
~P≡Pでない。 が「偽」であるならば、そのときに限って、 P≡Pである。 は「真」であり、
 P≡Pである。 が「偽」であるならば、そのときに限って、~P≡Pでない。 は「真」である。
従って、
(20)(21)により、
(22)
③ ~P∨P∨Q
に於いて、
 P≡Pである。 が「真」であり、
~P≡Pでない。 も「真」であるならば、
 Q≡Qである。 は「偽」ではなく、「真」である。
従って、
(18)(22)により、
(23)
①  (P&~P)→Q
② ~(P&~P)∨Q
③   ~P∨ P ∨Q
に於いて、
 P≡Pである。 が「真」であり、
~P≡Pでない。 も「真」であるならば、
 Q≡Qである。 は「偽」ではなく、「真」である。
然るに、
(24)
 P≡Pである。 が「真」であるならば、
~P≡Pでない。 は「偽」である。
従って、
(23)(24)により、
(25)
 P≡Pである。 が「真」であり、
~P≡Pでない。 も「真」である。
といふことは、「有り得ない」。
従って、
(23)(24)により、
(25)
①  (P&~P)→Q
② ~(P&~P)∨Q
③   ~P∨ P ∨Q
に於いて、
 P≡Pである。 が「真」であり、
~P≡Pでない。 も「真」であるならば、
 Q≡Qである。 は「偽」ではなく、「真」である。
としも、「そのやうなこと」は、「有り得ない」。
従って、
(26)
(P&~P)→Q 然るに、
(P&~P)   従って、
              Q。
といふ「三段論法(MPP)」は、「有り得ない」。
従って、
(26)
P=太陽は東から昇る。
Q=バカボンのパパは天才である。
として、
 太陽が東から昇り、太陽が東から昇らないのであれば、バカボンのパパは天才である。 然るに、
 太陽は東から昇り、太陽は東から昇らない。 従って、
 バカボンのパパは天才である。
といふ「三段論法(MPP)」は、「有り得ない」。
cf.
西から昇ったおひさまが東へ沈む。(あ、たいへーん!)
これでいいのだ。これでいいのだ。
(アニメ、天才バカボン、主題歌)
然るに、
(27)
③ ~P∨P∨Q
といふ「式」は、
③ ~真∨真∨Q
であるか、
③ ~偽∨偽∨Q
であるかの、いづれかである。
然るに、
(28)
③ ~真∨真∨Q
③ ~偽∨偽∨Q
であれば、
③  偽∨真∨Q
③  真∨偽∨Q
であり、
③  偽∨真∨Q
③  真∨偽∨Q
は、「恒真式(トートロジー)」である。
(18)(26)(28)により、
(29)
①  (P&~P)→Q
② ~(P&~P)∨Q
③   ~P∨ P ∨Q
に於いて、
①=②=③ である。
とする限り、
①(P&~P)→Q
① 太陽が東から昇り、太陽が東から昇らないのであれば、バカボンのパパは天才である。
といふ「仮言命題」は、「恒に」であるが、
① 太陽が東から昇り、太陽が東から昇らない。
といふ「命題(矛盾)」は、「恒に」である。


(460)「ド・モルガンの法則」を理解することは「簡単」である。

2020-01-14 14:08:57 | 訓読

(01)
①『命題Pと命題Qの、少なくとも、一方はウソ(偽)である。』
②『命題Pと命題Qの、その両方が、同時に本当(真)である。』といふことはない
に於いて、
①=② である。
然るに、
(02)
①  ~P∨~Q
② ~(P& Q)
といふ「式」は、
①『命題Pと命題Qの、少なくとも、一方はウソ(偽)である。』
②『命題Pと命題Qの、その両方が、同時に本当(真)である。』といふことはない
といふ「意味」である。
従って、
(01)(02)により、
(03)
①  ~P∨~Q
② ~(P& Q)
に於いて、
①=② である。
然るに、
(04)
③ ~(~P∨~Q)
④ ~~(P& Q)
といふ「式」は、
①  ~P∨~Q
② ~(P& Q)
といふ「式」の「否定」である。
従って、
(05)
③ ~(~P∨~Q)
④ ~~(P& Q)
に於いても、
③=④ である。
然るに、
(06)
③ ~(~P∨~Q)
④ ~~(P& Q)
に於いて、
P=~P
Q=~Q
といふ「代入(Substitution)」を行ふと、
③ ~(~~P∨~~Q)
④ ~~(~P& ~Q)
然るに、
(07)
「二重否定律(DN)」により、
③ ~(~~P∨~~Q)
④ ~~(~P& ~Q)
といふ「式」は、
③ ~(P∨ Q)
④  ~P&~Q
といふ「式」に「等しい」。
従って、
(05)(06)(07)により、
(08)
③ ~(P∨ Q)
④  ~P&~Q
に於いて、
③=④ である。
従って、
(03)(08)により、
(09)
①  ~P∨~Q
② ~(P& Q)
③ ~(P∨ Q)
④  ~P&~Q
に於いて、
①=② であって、
③=④ である。
従って、
(09)により、
(10)
「番号」と付け直すと、
① ~(P∨ Q)
②  ~P&~Q
③ ~(P& Q)
④  ~P∨~Q
に於いて、
①=② であって、
③=④ であるものの、これらの「等式」を、「ド・モルガンの法則」といふ。
然るに、
(11)
①『命題Pと命題Qと命題Rの内の、少なくとも、1つは、ウソ(偽)である。』
②『命題Pと命題Qと命題Rの、その3つが、同時に、本当(真)である。』といふことはない。
に於いて、
①=② である。
従って、
(01)~(11)により、
(12)
① ~(P∨  Q∨  R)
②   ~P&~Q&~R
③  ~P∨~Q∨~R)
④ ~(P& Q& R)
に於いて、
①=② であって、
③=④ であるものの、これらの「等式」を、「モルガンの法則」といふ。
然るに、
(13)
① ~(P∨ Q)
②  ~P&~Q
③ ~(P& Q)
④  ~P∨~Q
に対する、「命題計算(Propositional calculation)」は、次(14)の通りである。
(14)
(ⅰ)
1  (1)~(P∨Q)  A
 2 (2)  P     A
 2 (3)  P∨Q   2∨I
12 (4)~(P∨Q)&
       (P∨Q)  13&I
1  (5) ~P     24RAA
  6(6)    Q   A
  6(7)  P∨Q   6∨I
1 6(8)~(P∨Q)&
       (P∨Q)  16&I
1  (9)   ~Q   68RAA
1  (ア)~P&~Q   59&I
(ⅱ)
1   (1)  ~P&~Q   A
 2  (2)   P∨ Q   A
1   (3)  ~P      1&E
  4 (4)   P      A
1 4 (5)  ~P& P   34&I
  4 (6)~(~P&~Q)  15RAA
   5(7)      Q   A
1   (8)     ~Q   1&E
1  5(9)   Q&~Q   78&I
   5(ア)~(~P&~Q)  19RAA
 2  (イ)~(~P&~Q)  2467ア∨E
12  (ウ) (~P&~Q)&
       ~(~P&~Q)  1イ&I
1   (エ) ~(P∨ Q)  2ウRAA
(ⅲ)
1   (1) ~( P& Q)  A
 2  (2) ~(~P∨~Q)  A
  3 (3)   ~P      A
  3 (4)   ~P∨~Q   3∨I
 23 (5) ~(~P∨~Q)&
 23 (6)  (~P∨~Q)  24&I
 2  (7)  ~~P      3RAA
 2  (8)    P      7DN
   9(9)      ~Q   A
   9(ア)   ~P∨~Q   9∨I
 2 9(イ) ~(~P∨~Q)&
         (~P∨~Q)  2ア&I
 2  (ウ)     ~~Q   9イRAA
 2  (エ)       Q   ウDN
 2  (オ)    P& Q   8エ&I
12  (カ) ~( P& Q)&
         ( P& Q)
1   (キ)~~(~P∨~Q)  2カRAA
1   (ク)   ~P∨~Q
(ⅳ)
1   (1) ~P∨~Q  A
 2  (2)  P& Q  A
  3 (3) ~P     A
 2  (4)  P     2&E
 23 (5) ~P&P   34&I
  3 (6)~(P& Q) 25RAA
   7(7)    ~Q  A
 2  (8)     Q  2&E
 2 7(9)  ~Q&Q  78&I
   7(ア)~(P& Q) 29RAA
1   (イ)~(P& Q) 1367ア∨E
然るに、
(15)
(ⅳ)
1   (1) ~P∨~Q  A
 2  (2)  P& Q  A
  3 (3) ~P     A
 2  (4)  P     2&E
 23 (5) ~P&P   34&I
  3 (6)~(P& Q) 25RAA
   7(7)    ~Q  A
 2  (8)     Q  2&E
 2 7(9)  ~Q&Q  78&I
   7(ア)~(P& Q) 29RAA
といふ「計算」に於ける、
1   (1) ~P∨~Q  A
 2  (2)  P& Q  A
といふ「行」は、
①『命題Pと命題Qの、少なくとも、一方は、ウソ(偽)である。』と「仮定」し、
②『命題Pと命題Qの、その両方が、同時に、本当(真)である。』と「仮定」する。
といふ「意味」である。
従って、
(15)により、
(16)
(ⅳ)
1   (1) ~P∨~Q  A
 2  (2)  P& Q  A
  3 (3) ~P     A
 2  (4)  P     2&E
 23 (5) ~P&P   34&I
  3 (6)~(P& Q) 25RAA
   7(7)    ~Q  A
 2  (8)     Q  2&E
 2 7(9)  ~Q&Q  78&I
   7(ア)~(P& Q) 29RAA
1   (イ)~(P& Q) 1367ア∨E
といふ「計算」は、
①『命題Pと命題Qの、少なくとも、一方は、ウソ(偽)である。』と「仮定」し、
②『命題Pと命題Qの、その両方が、同時に、本当(真)である。』と「仮定」すると、
⑤「矛盾」が生じ、
⑨「矛盾」が生じるため、
⑩『命題Pと命題Qの、その両方が、同時に、本当(真)である。』と「仮定」は、「否定」される。
といふことを、示してゐる。
然るに、
(16)により、
(17)
(ⅳ)
1   (1) ~P∨~Q  A
 2  (2)  P& Q  A
  3 (3) ~P     A
 2  (4)  P     2&E
 23 (5) ~P&P   34&I
  3 (6)~(P& Q) 25RAA
   7(7)    ~Q  A
 2  (8)     Q  2&E
 2 7(9)  ~Q&Q  78&I
   7(ア)~(P& Q) 29RAA
1   (イ)~(P& Q) 1367ア∨E
といふ「計算」は、
(ⅳ)
12  (ウ) ~(P& Q)&
         (P& Q)  2イ&I
 2  (エ)~(~P∨~Q)  1ウRAA
といふ風に、「続ける」ことも出来る。
然るに、
(18)
(ⅰ)
1  (1)~(P∨Q)  A
 2 (2)  P     A
 2 (3)  P∨Q   2∨I
12 (4)~(P∨Q)&
       (P∨Q)  13&I
1  (5) ~P     24RAA
  6(6)    Q   A
  6(7)  P∨Q   6∨I
1 6(8)~(P∨Q)&
       (P∨Q)  16&I
1  (9)   ~Q   68RAA
1  (ア)~P&~Q   59&I
に於いて、
P=~P
Q=~Q
といふ「代入(Substitution)」を行ふことが、出来る。
従って、
(17)(18)により、
(19)
⑤ ~(~P∨~Q) 
⑥ ~~P&~~P≡P&Q
に於いても、
⑤=⑥ である。