日本語の「は」と「が」について。

象は鼻が長い=∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
とりあえず「三上文法」を「批判」します。

(1338)∀x(Fx)≡∀x∀y(Fx&Fy)

2024-08-28 11:40:04 | 論理

(01)
D={a、b、c}
であるならば、
① ∀x(Fx)
②(Fa)&(Fb)&(Fc)
に於いて、
①=② である。
従って、
(01)により、
(02)
D={a、b、c}
であるならば、
① ∀x∀y(Fx&Fy)は、
           yに関して、
①(Fx&Fa)&(Fx&Fb)&(Fx&Fc)
という「3通り」が有る。
従って、
(02)により、
(03)
D={a、b、c}
であるならば、
① ∀x∀y(Fx&Fy)は、
        xに関しても、
①(Fa&Fa)&(Fa&Fb)&(Fa&Fc)
②(Fb&Fa)&(Fb&Fb)&(Fb&Fc)
③(Fc&Fa)&(Fc&Fb)&(Fc&Fc)
という「3通り」が有る。
然るに、
(04)
「冪等律」により、
①(Fa&Fa)=Fa
②(Fb&Fb)=Fb
③(Fc&Fc)=Fc
従って、
(03)(04)により、
(05)
①(Fa)&(Fa&Fb)&(Fa&Fc)
②(Fb&Fa)&(Fb)&(Fb&Fc)
③(Fc&Fa)&(Fc&Fb)&(Fc
従って、
(04)により、
(06)
「交換法則」により、
①(Fa)&(Fa&Fb)&(Fa&Fc)
②(Fb)&(Fb&Fa)&(Fb&Fc)
③(Fc)&(Fc&Fa)&(Fc&Fb)
従って、
(06)により、
(07)
「交換法則・結合法則」により、
①(Fa&Fa&Fa)&(Fb)&(Fc)
②(Fb&Fb&Fb)&(Fa)&(Fc)
③(Fc&Fc&Fc)&(Fa)&(Fb)
従って、
(07)により、
(08)
「冪等律」により、
①(Fa)&(Fb)&(Fc)
②(Fb)&(Fa)&(Fc)
③(Fc)&(Fa)&(Fb)
従って、
(08)により、
(09)
「交換法則」により、
①(Fa)&(Fb)&(Fc)
②(Fa)&(Fb)&(Fc)
③(Fa)&(Fb)&(Fc)
従って、
(09)により、
(10)
「冪等律」により、
③(Fa)&(Fb)&(Fc)
従って、
(01)~(10)により、
(11)
② ∀x∀y(Fx&Fy)
③(Fa)&(Fb)&(Fc)
に於いて、
②=③ である。
従って、
(01)(11)により、
(12)
D={a、b、c}
であるとして、
①   ∀y(Fy)
② ∀x∀y(Fx&Fy)
③(Fa)&(Fb)&(Fc)
に於いて、
①=②=③ である。
然るに、
(13)
D={a、b、c、d}
であるならば、
① ∀x(Fx)
②(Fa)&(Fb)&(Fc)&(Fd)
に於いて、
①=② である。
従って、
(01)~(12)(13)により、
(14)
「数学的帰納法」により、
D={a、b、c、d、・・・・・}
に於いて、
①   ∀y(Fy)
② ∀x∀y(Fx&Fy)
に於いて、
①=② である。
従って、
(14)により、
(15)
①   ∀y(Fy→y=y)
② ∀x∀y(Fx&Fy→x=y)
に於いて、
①=② である。
従って、
(15)により、
(16)
E.J.レモン、論理学初歩、練習問題3(P215)
つぎの相互に導出可能な結果を確立せよ。
(a):正確に1のものがFをもつ。
∃x{Fx&∀y(Fy→x=y)}├ ∃xFx&∀x∀y(Fx&Fy→x=y)
1  (1)∃x{Fx&∀y(Fy→x=y)}    A
 2 (2)   Fa&∀y(Fy→a=y)     A
 2 (3)      ∀y(Fy→a=y)     2&E
 2 (4)         Fb→a=b      3UE
  5(5)      Fa&Fb          A
  5(6)         Fb          5&E
 25(7)            a=b      46MPP
 2 (8)      Fa&Fb→a=b      57CP
 2 (9)   ∀y(Fa&Fy→a=y)     8UI
 2 (ア) ∀x∀y(Fx&Fy→x=y)     9UI(2には、aがあるが、a=bである)。
 2 (イ)  Fa                 2&E
 2 (ウ)∃xFx                 イEI
 2 (エ)∃xFx&∀x∀y(Fx&Fy→x=y) アウ&I
1  (ウ)∃xFx&∀x∀y(Fx&Fy→x=y) 12エEE
という「計算」は、「妥当」であり、
(b):正確に1のものがFをもつ。
∃xFx&∀x∀y(Fx&Fy→x=y)├ ∃x{Fx&∀y(Fy→x=y)}
1  (1)∃xFx&∀x∀y(Fx&Fy→x=y) A
1  (2)∃xFx                 1&E
 3 (3)  Fa                 A
1  (4)     ∀x∀y(Fx&Fy→x=y) 1&E
1  (5)       ∀y(Fa&Fy→a=y) 4UE
1  (6)          Fa&Fb→a=b  5UE
  7(7)             Fb      A
 37(8)          Fa&Fb      37&I
137(9)                a=b  68MPP
13 (ア)          Fb→a=b     79CP
13 (イ)       ∀y(Fy→a=y)    アUI
13 (ウ)    Fa&∀y(Fy→a=y)    3イ&I
13 (エ) ∃x{Fx&∀y(Fy→x=y)}   ウEI
1  (オ) ∃x{Fx&∀y(Fy→x=y)}   23エEE
という「計算」は、「妥当」である。
従って、
(16)により、
(17)
① ∃x{Fx&∀y(Fy→x=y)}
② ∃xFx&∀x∀y(Fx&Fy→x=y)
に於いて、すなはち、
① あるxは{Fであって、すべてのyについて、 (yがFであるならば、xとyは同一である)}。
② あるxは、Fであって、すべてのxとyについて(xがFであって、yもFであるあるならば、xとyは同一である)。
に於いて、
①=② である。



最新の画像もっと見る

コメントを投稿