(01)
D={a、b、c}
であるならば、
① ∀x(Fx)
②(Fa)&(Fb)&(Fc)
に於いて、
①=② である。
従って、
(01)により、
(02)
D={a、b、c}
であるならば、
① ∀x∀y(Fx&Fy)は、
yに関して、
①(Fx&Fa)&(Fx&Fb)&(Fx&Fc)
という「3通り」が有る。
従って、
(02)により、
(03)
D={a、b、c}
であるならば、
① ∀x∀y(Fx&Fy)は、
xに関しても、
①(Fa&Fa)&(Fa&Fb)&(Fa&Fc)
②(Fb&Fa)&(Fb&Fb)&(Fb&Fc)
③(Fc&Fa)&(Fc&Fb)&(Fc&Fc)
という「3通り」が有る。
然るに、
(04)
「冪等律」により、
①(Fa&Fa)=Fa
②(Fb&Fb)=Fb
③(Fc&Fc)=Fc
従って、
(03)(04)により、
(05)
①(Fa)&(Fa&Fb)&(Fa&Fc)
②(Fb&Fa)&(Fb)&(Fb&Fc)
③(Fc&Fa)&(Fc&Fb)&(Fc)
従って、
(04)により、
(06)
「交換法則」により、
①(Fa)&(Fa&Fb)&(Fa&Fc)
②(Fb)&(Fb&Fa)&(Fb&Fc)
③(Fc)&(Fc&Fa)&(Fc&Fb)
従って、
(06)により、
(07)
「交換法則・結合法則」により、
①(Fa&Fa&Fa)&(Fb)&(Fc)
②(Fb&Fb&Fb)&(Fa)&(Fc)
③(Fc&Fc&Fc)&(Fa)&(Fb)
従って、
(07)により、
(08)
「冪等律」により、
①(Fa)&(Fb)&(Fc)
②(Fb)&(Fa)&(Fc)
③(Fc)&(Fa)&(Fb)
従って、
(08)により、
(09)
「交換法則」により、
①(Fa)&(Fb)&(Fc)
②(Fa)&(Fb)&(Fc)
③(Fa)&(Fb)&(Fc)
従って、
(09)により、
(10)
「冪等律」により、
③(Fa)&(Fb)&(Fc)
従って、
(01)~(10)により、
(11)
② ∀x∀y(Fx&Fy)
③(Fa)&(Fb)&(Fc)
に於いて、
②=③ である。
従って、
(01)(11)により、
(12)
D={a、b、c}
であるとして、
① ∀y(Fy)
② ∀x∀y(Fx&Fy)
③(Fa)&(Fb)&(Fc)
に於いて、
①=②=③ である。
然るに、
(13)
D={a、b、c、d}
であるならば、
① ∀x(Fx)
②(Fa)&(Fb)&(Fc)&(Fd)
に於いて、
①=② である。
従って、
(01)~(12)(13)により、
(14)
「数学的帰納法」により、
D={a、b、c、d、・・・・・}
に於いて、
① ∀y(Fy)
② ∀x∀y(Fx&Fy)
に於いて、
①=② である。
従って、
(14)により、
(15)
① ∀y(Fy→y=y)
② ∀x∀y(Fx&Fy→x=y)
に於いて、
①=② である。
従って、
(15)により、
(16)
E.J.レモン、論理学初歩、練習問題3(P215)
つぎの相互に導出可能な結果を確立せよ。
(a):正確に1のものがFをもつ。
∃x{Fx&∀y(Fy→x=y)}├ ∃xFx&∀x∀y(Fx&Fy→x=y)
1 (1)∃x{Fx&∀y(Fy→x=y)} A
2 (2) Fa&∀y(Fy→a=y) A
2 (3) ∀y(Fy→a=y) 2&E
2 (4) Fb→a=b 3UE
5(5) Fa&Fb A
5(6) Fb 5&E
25(7) a=b 46MPP
2 (8) Fa&Fb→a=b 57CP
2 (9) ∀y(Fa&Fy→a=y) 8UI
2 (ア) ∀x∀y(Fx&Fy→x=y) 9UI(2には、aがあるが、a=bである)。
2 (イ) Fa 2&E
2 (ウ)∃xFx イEI
2 (エ)∃xFx&∀x∀y(Fx&Fy→x=y) アウ&I
1 (ウ)∃xFx&∀x∀y(Fx&Fy→x=y) 12エEE
という「計算」は、「妥当」であり、
(b):正確に1のものがFをもつ。
∃xFx&∀x∀y(Fx&Fy→x=y)├ ∃x{Fx&∀y(Fy→x=y)}
1 (1)∃xFx&∀x∀y(Fx&Fy→x=y) A
1 (2)∃xFx 1&E
3 (3) Fa A
1 (4) ∀x∀y(Fx&Fy→x=y) 1&E
1 (5) ∀y(Fa&Fy→a=y) 4UE
1 (6) Fa&Fb→a=b 5UE
7(7) Fb A
37(8) Fa&Fb 37&I
137(9) a=b 68MPP
13 (ア) Fb→a=b 79CP
13 (イ) ∀y(Fy→a=y) アUI
13 (ウ) Fa&∀y(Fy→a=y) 3イ&I
13 (エ) ∃x{Fx&∀y(Fy→x=y)} ウEI
1 (オ) ∃x{Fx&∀y(Fy→x=y)} 23エEE
という「計算」は、「妥当」である。
従って、
(16)により、
(17)
① ∃x{Fx&∀y(Fy→x=y)}
② ∃xFx&∀x∀y(Fx&Fy→x=y)
に於いて、すなはち、
① あるxは{Fであって、すべてのyについて、 (yがFであるならば、xとyは同一である)}。
② あるxは、Fであって、すべてのxとyについて(xがFであって、yもFであるあるならば、xとyは同一である)。
に於いて、
①=② である。
最新の画像[もっと見る]
- (219)「雜説・韓愈」の述語論理(Ⅱ):「返り点」に注意。 6年前
- (148)足りないのは「和文力」。 6年前
- (145)「雑説、韓愈」に於ける「連言の否定」(Ⅴ) 6年前
- (142)「雑説、韓愈」に於ける「連言の否定」(Ⅱ)。 6年前
- (141)「雑説、韓愈」と「連言の否定」。 6年前
- (139)『括弧』と『返り点』。 6年前
- (137)「君子不以其所以養人者害人」等の「不」について。 6年前
- (135)「以十五城(副詞句)」の位置について。 6年前
- (130)「白話文(北京語)」の、有り得ない「返り点」について。 6年前
- (130)「白話文(北京語)」の、有り得ない「返り点」について。 6年前
※コメント投稿者のブログIDはブログ作成者のみに通知されます