日本語の「は」と「が」について。

象は鼻が長い=∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
とりあえず「三上文法」を「批判」します。

裁判は、いきなり、結審した模様である。

2024-11-01 14:05:36 | 医療過誤

(01)
(ⅰ)裁判長は、
(ⅱ)被告に対して、
(ⅲ)第四回口頭弁論の期日の2週間前までに、「第準備書面」を送達するように、命じたが、
(ⅳ)原告(ブロガー)は、
(ⅴ)被告の「第準備書面」に「反論」する形で、
(ⅵ)第四回口頭弁論の期日の5日前に、「第16準備書面」を提出して、「準備書面」を、次のように「締め括った」。

然るに、
(02)
(ⅰ)第四回口頭弁論において、
(ⅱ)裁判長は、
(ⅲ)原告(ブロガー)に対して、
(ⅳ)「主張すべき」は、「すべて主張し終えた」か。
という風に、「質問」をした。
然るに、
(03)
(ⅰ)原告(ブロガー)は、
(ⅱ)他にも書きたいことがあるため、「すべてを主張し終えた」わけではない。
という風に、「回答」し、併せて、
(ⅲ)原告(ブロガー)は、
(ⅳ)被告に対して、
(ⅴ)「第16準備書面」で行った所の、「問題提起・重要問題提起・最重要問題提起」に対する「反論」を要求した。
然るに、
(04)
(ⅰ)被告は、
(ⅱ)原告が示した所の、「問題提起・重要問題提起・最重要問題提起」に対する「反論」をする「予定」は無い
という風に、「回答」した。
然るに、
(04)により、
(05)
(ⅰ)原告による、
(ⅱ)「問題提起・重要問題提起・最重要問題提起」に対して、
(ⅲ)被告が、
(ⅳ)「反論」をしない
ということから、
(ⅳ)裁判長は、
(ⅴ)84日後に、「判決の言い渡し」をするとしたが、裁判の後で、書記官の方が言うには、
(ⅵ) 「判決文」は「郵送」で受け取ることになるので、 「判決言い渡し期日」に、「法廷」に出廷する必要は無い。
ということであった。
然るに、
(03)により、
(06)
(ⅰ)原告(ブロガー)は、
(ⅱ)他にも書きたいことがあるため、「すべてを主張し終えた」わけではない。
ということから、
(ⅲ)もう一度、「裁判所」に対して、「書面」を提出したい。
という風に、要求をした。
然るに、
(06)により、
(07)
(ⅰ)裁判長は、
(ⅱ)原告に対して、
(ⅲ)仮に、「新たな証拠」を提出しても、「その証拠」によって、「判決」が変わることはないが、
(ⅳ)「更なる書面」を提出すれば、「その書面」も「参考」にする
という風に、「説明」をした。
従って、
(01)~(07)により、
(08)
(ⅰ)「第 1準備書面(被告)」に対する、
(ⅱ)「第16準備書面(原告)」によって、
(ⅲ)「私の(行政)訴訟」は、「(和解が無いことは、知っていたが、予想に反して、弁論準備手続も経ずに、いきなり)結審した模様である」。
然るに、
(09)
「素人が岡口基一と学ぶ要件事実(ユーチューブ)」によると、民事訴訟というゲームは、
①「原告と被告」が、それぞれ、
②「自分のターン(番)」で、
③「勝利を目指して」、
④「原告の主張」を、
⑤「被告、または、裁判所」が「認めれば」、
⑥「原告の勝訴」である。
従って、
(04)(09)により、
(10)
(ⅰ)被告は、
(ⅱ)原告が示した所の、「問題提起・重要問題提起・最重要問題提起」に対する「反論」をする「予定」は無い
という風に、「回答」した。
ということからすれば、思うに、
(ⅲ)原告(ブロガー)の「勝訴」であるが、
(ⅳ)近々、この点を、「然るべき弁護士」に、「確認」をするつもりである。
(11)
(ⅰ)「弁護士」に頼らず、「本人訴訟」をやって分かったことであるが、
(ⅱ)「法廷で行われる裁判」は、ほとんど、「打合せ」のようなものであって、
(ⅲ)「勝敗を決する」のは、「書面の、出来・不出来」であって、
(ⅳ)「法廷」での「裁判」自体は、「早ければ、5分もかからない」。
然るに、
(11)
(ⅰ)私の場合は、「訴状」を含めて、

という風に、「かくも、多くの書面」を「提出」することになったので、
(ⅱ)書記官の方に、「多すぎる書面」は、「裁判所にとって、迷惑でしょうか」と、「質問」をしたところ、
(ⅲ)書記官曰く、「そんなことは無い」との、ことであった。
然るに、
(12)
(ⅰ)書記官曰く、
(ⅱ)「弁護士に依頼する場合は、弁護士との、打ち合わせを必要とする」ため、
(ⅱ)「たくさんの書面を提出する」ことは、「出来ない」が、
(ⅲ)「本人訴訟の場合は、そうではない」との、ことであった。
従って、
(13)
(ⅰ)弁護士に頼らないで行う「本人訴訟のメリット」は、
(ⅱ)原告が「言いたいこと」を、「好きなだけ、書面にすることが出来る」ということである。
然るに、
(14)
なお、鑑定費用、ことに医師が行う鑑定のそれはかなり高額である(僕の経験では、70万から100万円くらいが多かった)。
(瀬木比呂氏、民事裁判入門、2019年、201頁)
然るに、
(15)
加えて、答弁書の第5の2(4)イ(ア)24ページで述べたとおり、貧血に急性腎不全が加わるとNOMIが発症しやすくなるとの原告の主張の根拠はグーグルの生成AIの回答であるところ、原告は、グーグルの生成AIの回答は統計と確率で導くものであるから、貧血と腎不全が重なると、非閉塞性腸管虚血のリスクが高まるという質問への回答も「結構当たっている」と述べるのみで、グーグルの生成AIがどのような確率と統計で貧血に急性腎不全が加わるとNOMIが発症しやすくなる旨の回答を示しているのかについては、根拠が一切明らかにされていない(被告、第準備書面)。
従って、
(14)(15)により、
(16)
(ⅰ)「1回につき、100万円」もする「鑑定」を、
(ⅱ)「何回」も「依頼する」わけには、行かないものの、
(ⅲ)「グーグルの生成AI」であれば、
(ⅳ)「何回、質問しても、「鑑定料は0円」である。
従って、
(01)(11)(16)により、
(17)
(ⅰ)「グーグルの生成AI」が「無かりせば」、
(ⅱ)

というような「書面」は、「書けなかった」。
という、ことになる。


∀x(Fx)≡∀x∀y(Fx&Fy)

2024-08-28 11:40:04 | 論理

(01)
D={a、b、c}
であるならば、
① ∀x(Fx)
②(Fa)&(Fb)&(Fc)
に於いて、
①=② である。
従って、
(01)により、
(02)
D={a、b、c}
であるならば、
① ∀x∀y(Fx&Fy)は、
           yに関して、
①(Fx&Fa)&(Fx&Fb)&(Fx&Fc)
という「3通り」が有る。
従って、
(02)により、
(03)
D={a、b、c}
であるならば、
① ∀x∀y(Fx&Fy)は、
        xに関しても、
①(Fa&Fa)&(Fa&Fb)&(Fa&Fc)
②(Fb&Fa)&(Fb&Fb)&(Fb&Fc)
③(Fc&Fa)&(Fc&Fb)&(Fc&Fc)
という「3通り」が有る。
然るに、
(04)
「冪等律」により、
①(Fa&Fa)=Fa
②(Fb&Fb)=Fb
③(Fc&Fc)=Fc
従って、
(03)(04)により、
(05)
①(Fa)&(Fa&Fb)&(Fa&Fc)
②(Fb&Fa)&(Fb)&(Fb&Fc)
③(Fc&Fa)&(Fc&Fb)&(Fc
従って、
(04)により、
(06)
「交換法則」により、
①(Fa)&(Fa&Fb)&(Fa&Fc)
②(Fb)&(Fb&Fa)&(Fb&Fc)
③(Fc)&(Fc&Fa)&(Fc&Fb)
従って、
(06)により、
(07)
「交換法則・結合法則」により、
①(Fa&Fa&Fa)&(Fb)&(Fc)
②(Fb&Fb&Fb)&(Fa)&(Fc)
③(Fc&Fc&Fc)&(Fa)&(Fb)
従って、
(07)により、
(08)
「冪等律」により、
①(Fa)&(Fb)&(Fc)
②(Fb)&(Fa)&(Fc)
③(Fc)&(Fa)&(Fb)
従って、
(08)により、
(09)
「交換法則」により、
①(Fa)&(Fb)&(Fc)
②(Fa)&(Fb)&(Fc)
③(Fa)&(Fb)&(Fc)
従って、
(09)により、
(10)
「冪等律」により、
③(Fa)&(Fb)&(Fc)
従って、
(01)~(10)により、
(11)
② ∀x∀y(Fx&Fy)
③(Fa)&(Fb)&(Fc)
に於いて、
②=③ である。
従って、
(01)(11)により、
(12)
D={a、b、c}
であるとして、
①   ∀y(Fy)
② ∀x∀y(Fx&Fy)
③(Fa)&(Fb)&(Fc)
に於いて、
①=②=③ である。
然るに、
(13)
D={a、b、c、d}
であるならば、
① ∀x(Fx)
②(Fa)&(Fb)&(Fc)&(Fd)
に於いて、
①=② である。
従って、
(01)~(12)(13)により、
(14)
「数学的帰納法」により、
D={a、b、c、d、・・・・・}
に於いて、
①   ∀y(Fy)
② ∀x∀y(Fx&Fy)
に於いて、
①=② である。
従って、
(14)により、
(15)
①   ∀y(Fy→y=y)
② ∀x∀y(Fx&Fy→x=y)
に於いて、
①=② である。
従って、
(15)により、
(16)
E.J.レモン、論理学初歩、練習問題3(P215)
つぎの相互に導出可能な結果を確立せよ。
(a):正確に1のものがFをもつ。
∃x{Fx&∀y(Fy→x=y)}├ ∃xFx&∀x∀y(Fx&Fy→x=y)
1  (1)∃x{Fx&∀y(Fy→x=y)}    A
 2 (2)   Fa&∀y(Fy→a=y)     A
 2 (3)      ∀y(Fy→a=y)     2&E
 2 (4)         Fb→a=b      3UE
  5(5)      Fa&Fb          A
  5(6)         Fb          5&E
 25(7)            a=b      46MPP
 2 (8)      Fa&Fb→a=b      57CP
 2 (9)   ∀y(Fa&Fy→a=y)     8UI
 2 (ア) ∀x∀y(Fx&Fy→x=y)     9UI(2には、aがあるが、a=bである)。
 2 (イ)  Fa                 2&E
 2 (ウ)∃xFx                 イEI
 2 (エ)∃xFx&∀x∀y(Fx&Fy→x=y) アウ&I
1  (ウ)∃xFx&∀x∀y(Fx&Fy→x=y) 12エEE
という「計算」は、「妥当」であり、
(b):正確に1のものがFをもつ。
∃xFx&∀x∀y(Fx&Fy→x=y)├ ∃x{Fx&∀y(Fy→x=y)}
1  (1)∃xFx&∀x∀y(Fx&Fy→x=y) A
1  (2)∃xFx                 1&E
 3 (3)  Fa                 A
1  (4)     ∀x∀y(Fx&Fy→x=y) 1&E
1  (5)       ∀y(Fa&Fy→a=y) 4UE
1  (6)          Fa&Fb→a=b  5UE
  7(7)             Fb      A
 37(8)          Fa&Fb      37&I
137(9)                a=b  68MPP
13 (ア)          Fb→a=b     79CP
13 (イ)       ∀y(Fy→a=y)    アUI
13 (ウ)    Fa&∀y(Fy→a=y)    3イ&I
13 (エ) ∃x{Fx&∀y(Fy→x=y)}   ウEI
1  (オ) ∃x{Fx&∀y(Fy→x=y)}   23エEE
という「計算」は、「妥当」である。
従って、
(16)により、
(17)
① ∃x{Fx&∀y(Fy→x=y)}
② ∃xFx&∀x∀y(Fx&Fy→x=y)
に於いて、すなはち、
① あるxは{Fであって、すべてのyについて、 (yがFであるならば、xとyは同一である)}。
② あるxは、Fであって、すべてのxとyについて(xがFであって、yもFであるあるならば、xとyは同一である)。
に於いて、
①=② である。


「清少納言は紫式部ではない」の「述語論理」。

2024-08-27 15:22:47 | 論理

(01)
1       (1)  ∃x(紫式部x&源氏物語の著者x) A
 2      (2)     紫式部a&源氏物語の著者a  A
  3     (3) ~∀x(紫式部x→源氏物語の著者x) A
  3     (5) ∃x~(紫式部x→源氏物語の著者x) 3量化子の関係
   6    (6)   ~(紫式部a→源氏物語の著者a) A
   6    (7)  ~(~紫式部a∨源氏物語の著者a) 6含意の定義
   6    (8)    紫式部a&~源氏物語の著者a  6ド・モルガンの法則
 2      (9)          源氏物語の著者a  2&E
   6    (ア)         ~源氏物語の著者a  8&E
 2 6    (イ) 源氏物語の著者&~源氏物語の著者a  9ア&I
 23     (ウ) 源氏物語の著者&~源氏物語の著者a  36イEE
1 3     (エ) 源氏物語の著者&~源氏物語の著者a  12ウEE
1       (オ)~~∀x(紫式部x→源氏物語の著者x) 3エRAA
1       (カ)  ∀x(紫式部x→源氏物語の著者x) オDN
    キ   (キ)  ∃x(清少納言x&紫式部x)    A
1       (ク)     紫式部a→源氏物語の著者a  カUE
     ケ  (ケ)     清少納言a&紫式部a     A
      コ (コ)∃x(清少納言x&~源氏物語の著者x) A
       サ(サ)   清少納言a&~源氏物語の著者a  A
     ケ  (シ)           紫式部a     ケ&E
1    ケ  (ス)          源氏物語の著者a  クシMPP
       サ(セ)         ~源氏物語の著者a  サ&E
1    ケ サ(ソ)   源氏物語a&~源氏物語の著者a  スセ&I
1   キ  サ(タ)   源氏物語a&~源氏物語の著者a  キケソEE
1   キ コ (チ)   源氏物語a&~源氏物語の著者a  コサタEE
1     コ (ツ) ~∃x(清少納言x&紫式部x)    キチRAA
1     コ (テ) ∀x~(清少納言x&紫式部x)    ツ量化子の関係
1     コ (ト)   ~(清少納言a&紫式部a)    テUE
1     コ (ナ)   ~清少納言a∨~紫式部a     ト、ド・モルガンの法則
1     コ (ニ)    清少納言a→~紫式部a     ナ含意の定義
1     コ (ヌ) ∀x(清少納言x→~紫式部x)    ニUI
従って、
(01)により、
(02)
(ⅰ)∃x( 紫式部x& 源氏物語の著者x)。然るに、
(ⅱ)∃x(清少納言x&~源氏物語の著者x)。従って、
(ⅲ)∀x(清少納言x→~紫式部x)。
という「推論」は「妥当」である。
従って、
(02)により、
(03)
(ⅰ)あるxは、 紫式部であって、源氏物語の著者である。 然るに、
(ⅱ)あるxは、清少納言であるが、源氏物語の著者ではない。従って、
(ⅲ)いかなるxであっても(xが清少納言であれば、紫式部ではない)。
という「推論」は「妥当」である。
従って、
(03)により、
(04)
(ⅰ)紫式部は、源氏物語の著者である。 然るに、
(ⅱ)清少納言は源氏物語の著者ではない。従って、
(ⅲ)誰であれ、清少納言であるならば、紫式部ではない。
という「推論」は、「述語論理」としても、「妥当」である。
然るに、
(05)

然るに、
(06)
現在の情報検索や自然言語処理は、基本的に論理で処理させることは当面諦めて統計と確率の手法でAIに言語を学習させようとしています。つまり、文章の意味はわからなくても、その文章に出てくる既知の単語とその組合せから統計的に推測して、正しそうな回答を導き出そうとしているのです(新井紀子、AIvs.教科書が読めない子供たち、2018年、122頁)。
従って、
(01)~(06)により、
(07)
AIは、
(ⅰ)紫式部は、源氏物語の著者である。 然るに、
(ⅱ)清少納言は源氏物語の著者ではない。従って、
(ⅲ)誰であれ、清少納言であるならば、紫式部ではない。
という「推論」を行う際に、
① ∃x( 紫式部x& 源氏物語の著者x)
② ∀x( 紫式部x→ 源氏物語の著者x)
③ ∃x(清少納言x&~源氏物語の著者x)
④ ∀x(清少納言x→~紫式部x)。
に於ける、
①から②を「演繹」して、その上で、
② と ③ によって、
④を「演繹」している。
といふ、わけではない
従って、
(06)(07)により、
(08)
AIは、「論理的な機械」ではなく
AIは、「確率的・統計的な機械」である。


「兎は耳が長い(象は鼻が長い)」の「述語論理」。

2024-08-24 10:09:35 | 象は鼻が長い、述語論理。

(01)
1      (1) ∀x{兎x→∃y(耳yx&長y)&∀z(~耳zx→~長z)} A
 2     (2) ∀x{象x→∃z(鼻zx&~耳zx&長z)}         A
  3    (3) ∃x(兎x&象x)                      A
1      (4)    兎a→∃y(耳ya&長y)&∀z(~耳za→~長z)  1UE
 2     (5)    象a→∃z(鼻za&~耳za&長z)          2UE
   6   (6)    兎a&象a                       A
   6   (7)    兎a                          6&E
   6   (8)       象a                       6&E
1  6   (9)       ∃y(耳ya&長y)&∀z(~耳za→~長z)  47MPP
1  6   (ア)                  ∀z(~耳za→~長z)  9&E
1  6   (イ)                     ~耳ba→~長b   アUE
 2 6   (ウ)       ∃z(鼻za&~耳za&長z)          58MPP
    エ  (エ)          鼻ba&~耳ba&長b           A
    エ  (オ)              ~耳ba              エ&E
    エ  (カ)                   長b           エ&E
1  6エ  (キ)                          ~長b   イオMPP
1  6エ  (ク)                   長b&~長b       カキ&I
12 6   (ケ)                   長b&~長b       ウエクEE
123    (コ)                   長b&~長b       36ケEE
12     (サ)~∃x(兎x& 象x)                     3コRAA
     シ (シ)  ~(兎a→~象a)                     A
     シ (ス) ~(~兎a∨~象a)                     シ含意の定義
     シ (セ)    兎a& 象a                      ス、ド・モルガンの法則
      シ (ソ) ∃x(兎x& 象x)                     セEI
12   シ (タ)~∃x(兎x& 象x)&∃x(兎x& 象x)          サソ&I
12     (チ) ~~(兎a→~象a)                     シタRAA
12     (ツ)   (兎a→~象a)                     チDN
      テ(テ)        象a                      A
      テ(ト)      ~~象a                      テDN
12    テ(ナ)   ~兎a                          ツトMTT
12     (ニ)    象a→~兎a                      テナCP
12     (ヌ) ∀x(象x→~兎x)                     ニUI
従って、
(01)により、
(02)
(ⅰ)∀x{兎x→∃y(耳yx&長y)&∀z(~耳zx→~長z)}。然るに、
(ⅱ)∀x{象x→∃z(鼻zx&~耳zx&長z)}。従って、
(ⅲ)∀x(象x→~兎x)。
といふ『推論』、すなはち、
(ⅰ)すべてのxについて{xが兎であるならば、あるyは(xの耳であって、長く)、すべてのzについて(zがxの耳ではないならば、zは長くない)}。然るに、
(ⅱ)すべてのxについて{xが象であるならば、あるzは(xの鼻であって、xの耳ではないが、zは長い)}。従って、
(ⅲ)すべてのxについて(xが象であるならば、xは兎ではない)。
といふ『推論』は、「妥当」である。
従って、
(02)により、
(03)
兎=象
耳=鼻
象=兎
鼻=耳
といふ「代入(置き換へ)」により、
(ⅰ)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。然るに、
(ⅱ)∀x{兎x→∃z(耳zx&~鼻zx&長z)}。従って、
(ⅲ)∀x(兎x→~象x)。
といふ『推論』、すなはち、
(ⅰ)すべてのxについて{xが象であるならば、あるyは(xの鼻であって、長く)、すべてのzについて(zがxの鼻ではないならば、zは長くない)}。然るに、
(ⅱ)すべてのxについて{xが兎であるならば、あるzは(xの耳であって、xの鼻ではないが、zは長い)}。従って、
(ⅲ)すべてのxについて(xが兎であるならば、xは象ではない)。
といふ『推論』は、「妥当」である。
従って、
(04)
(ⅰ)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。然るに、
(ⅱ)∀x{兎x→∃z(耳zx&~鼻zx&長z)}。従って、
(ⅲ)∀x(兎x→~象x)。
ではなく
(ⅰ)∀x{象x→∃y(鼻yx&長y)}。然るに、
(ⅱ)∀x{兎x→∃z(耳zx&~鼻zx&長z)}。従って、
(ⅲ)∀x(兎x→~象x)。
であるならば、すなはち、
(ⅰ)すべてのxについて{xが象であるならば、あるyは(xの鼻であって、長く)、すべてのzについて(zがxの鼻ではないならば、zは長くない)}。然るに、
(ⅱ)すべてのxについて{xが兎であるならば、あるzは(xの耳であって、xの鼻ではないが、zは長い)}。従って、
(ⅲ)すべてのxについて(xが兎であるならば、xは象ではない)。
であるならば、この場合、
(ⅰ)すべてのxについて{xが象であるならば、あるyは(xの鼻であって、長く)}。然るに、
(ⅱ)すべてのxについて{xが兎であるならば、あるzは(xの耳であって、xの鼻ではないが、zは長い)}。従って、
(ⅲ)すべてのxについて(xが兎であるならば、xは象ではない)。
といふ『推論』は、「妥当」ではない
従って、
(04)により、
(05)
(ⅰ)象は鼻長い。然るに、
(ⅱ)兎の耳は鼻ではないが、長い。従って、
(ⅲ)兎は象ではない。
といふ『推論』が、
(ⅰ)すべてのxについて{xが象であるならば、あるyは(xの鼻であって、長く)}。然るに、
(ⅱ)すべてのxについて{xが兎であるならば、あるzは(xの耳であって、xの鼻ではないが、zは長い)}。従って、
(ⅲ)すべてのxについて(xが兎であるならば、xは象ではない)。
ではなく
(ⅰ)∀x{象x→∃y(鼻yx&長y)}。然るに、
(ⅱ)∀x{兎x→∃z(耳zx&~鼻zx&長z)}。従って、
(ⅲ)∀x(兎x→~象x)。
といふ「意味」であるならば、
(ⅰ)象は鼻長い。然るに、
(ⅱ)兎の耳は鼻ではないが、長い。従って、
(ⅲ)兎は象ではない。
といふ『推論』は、「妥当」ではない
従って、
(03)~(05)により、
(06)
① 兎は耳長い。
② 象は鼻長い。
といふ「日本語」は、それぞれ、
① ∀x{兎x→∃y(耳yx&長y)&∀z(~耳zx→~長z)}。
② ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
といふ「意味」でなければ、ならない。
従って、
(06)により、
(07)
③ AはBCである。
といふ「日本語」は、
③ ∀x{Ax→∃y(Byx&Cy)&∀z(~Bzx→~Cz)}。
といふ「意味」でなければ、ならない。
従って、
(07)により、
(08)
例へば、
③ 私は膝痛い。
といふ「日本語」は、
③ ∀x{私x→∃y(膝yx&痛y)&∀z(~膝zx→~痛z)}。
といふ「意味」でなければ、ならない。


∃x∃y(Fx&Fy)├ ∃x(Fx)

2024-08-23 17:50:05 | 論理

(01)
142 ∃x(Fx)├ ∃x∃y(Fx&Fy)
1 (1)  ∃x(Fx)    A
 2(2)     Fa     A
 2(3)     Fa&Fa  22&I
 2(4)  ∃y(Fa&Fy) 3EI
 2(5)∃x∃y(Fx&Fy) 4EI
1 (6)∃x∃y(Fx&Fy) 125EE
(この結果は事実上、強化して相互導出可能にすることができる。)この連式の妥当性から、
ひとつだけの対象がFを持っているならば、∃x∃y(Fx&Fy)ということが帰結する。
言い換えると、相異なる変数「x」と「y」を用いる場合に、そのことから、それに対応する異なった対象が存在する
ということは、帰結しないのである
(E.J.レモン著、論理学初歩、竹尾治一郎・浅野楢英、1973年、210頁)。
然るに、
(02)
{xの変域}={a、b、c}
とする。
従って、
(02)により、
(03)
① ∃x(Fx)
② ∃y(Fy)
③ Fa∨Fb∨Fc
に於いて、
①=② であって、
①=③ である。
従って、
(03)により、
(04)
① ∃x{∃y(Fx&Fy)}
②{(Fa&Fa)∨(Fa&Fb)∨(Fa&Fc)}∨{(Fb&Fa)∨(Fb&Fb)∨(Fb&Fc)}∨{(Fc&Fa)∨(Fc&Fb)∨(Fc&Fc)}
に於いて、
①=② である。
然るに、
(05)
「冪等律」により、
①(Fa&Fa)=Fa
②(Fb&Fb)=Fb
③(Fc&Fc)=Fc
従って、
(04)(05)により、
(06)
① ∃x{∃y(Fx&Fy)}
②{Fa∨(Fa&Fb)∨(Fa&Fc)}∨{(Fb&Fa)∨Fb∨(Fb&Fc)}∨{(Fc&Fa)∨(Fc&Fb)∨Fc}
に於いて、
①=② である。
然るに、
(07)
「交換法則」により、
①(Fa&Fb)=(Fb&Fa)
②(Fa&Fc)=(Fc&Fa)
③(Fb&Fc)=(Fc&Fb)
従って、
(06)(07)により、
(08)
① ∃x{∃y(Fx&Fy)}
②{Fa∨(Fa&Fb)∨(Fa&Fc)}∨{Fb∨(Fb&Fc)}∨{Fc}
に於いて、
①=② である。
然るに、
(09)
「交換法則・結合法則」により、
②{Fa∨(Fa&Fb)∨(Fa&Fc)}∨{Fb∨(Fb&Fc)}∨{Fc}
③{(Fa∨Fb∨Fc)∨(Fa&Fb)}∨{(Fa&Fc)∨(Fb&Fc)}
に於いて、
②=③ である。
然るに、
(10)
1       (1){(Fa∨Fb∨Fc)∨(Fa&Fb)}∨{(Fa&Fc)∨(Fb&Fc)} A
 2      (2){(Fa∨Fb∨Fc)∨(Fa&Fb)}                   A
  3     (3) (Fa∨Fb∨Fc)                            A
   4    (4)            (Fa&Fb)                    A
   4    (5)             Fa                        4&E
   4    (6)             Fa∨Fb                     5∨I
   4    (7)            (Fa∨Fb∨Fc)                 6∨I
 2      (8) (Fa∨Fb∨Fc)                            23347∨E
    9   (9)                     {(Fa&Fc)∨(Fb&Fc)} A
     ア  (ア)                      (Fa&Fc)          A
     ア  (イ)                       Fa              ア&E
     ア  (ウ)                       Fa∨Fb           イ∨I
     ア  (エ)                      (Fa∨Fb∨Fc)       ウ∨I
      オ (オ)                              (Fb&Fc)  A
      オ (カ)                               Fb      オ&E
      オ (キ)                            Fa∨Fb      カ∨I
      オ (ク)                           (Fa∨Fb∨Fc)  キ∨I
    9   (ケ)                      (Fa∨Fb∨Fc)       9アエオク∨E
1       (コ) (Fa∨Fb∨Fc)                            1289ケ∨E
従って、
(08)(09)(10)により、
(11)
① ∃x{∃y(Fx&Fy)}
② (Fa∨Fb∨Fc)
に於いて、
①⇒② である。
従って、
(03)(11)により、
(12)
① ∃x{∃y(Fx&Fy)}
② ∃x(Fx)
に於いて、
①⇒② である。
従って、
(01)(12)により、
(13)
142 ∃x(Fx)┤├ ∃x∃y(Fx&Fy)
は、相互導出可能にすることができる


「AIは、論理が苦手である!!」。

2024-07-05 17:57:23 | 論理

(01)
(ⅰ)「東京都民でない」ならば、「中野区民でない」。
(ⅱ)「東京都民である」ならば、「中野区民である」。
という「命題の真偽」を「判定せよ」。
cf.

然るに、
(02)
例えば、
(ⅰ)「埼玉県民」であるならば、「東京都民」ではないし、
(〃)「埼玉県民」であるならば、「中野区民」ではない
従って、
(02)による、
(03)
(ⅰ)「東京都民でない」ならば、「中野区民でない」。
(〃)「東京都民でない・中野区民」は「存在しない」。
という「命題」は「」である。
然るに、
(04)
(ⅱ)「練馬区民」であるならば、「東京都民」であるが、
(〃)「練馬区民」であるならば、「中野区民」ではない
従って、
(04)により、
(05)
(ⅱ)「東京都民である」ならば、「中野区民である」。
という「命題」は「」である。
然るに、
(06)
「マイクロソフト・コパイロット」の「解答」は、


従って、
(04)(05)(06)により、
(07)
「マイクロソフト・コパイロット」は、
(ⅱ)「練馬区民」であるならば、「東京都民」であるが、
(〃)「練馬区民」であるならば、「中野区民」ではない。
にも拘わらず、
(ⅱ)「東京都民である」ならば、「中野区民である」。
という「命題」が、「」であることを「見抜けなかった」。
という、ことになる。


「単独犯」の「述語論理」(AIには無理!!)。

2024-05-28 16:41:52 | 日本語、述語論理。

(01)
「次の計算」では、
「ド・モルガンの法則」や、「含意の定義」等の「定理(公式)」を用いることにする。
(02)
(ⅰ)
1    (1)  ∀x{犯人x→[(田中x∨鈴木x)&~(田中x&鈴木x)]} A
1    (2)      犯人a→[(田中a∨鈴木a)&~(田中a&鈴木a)]  1UE
 3   (3)     犯人a                         A
13   (4)          (田中a∨鈴木a)&~(田中a&鈴木a)   23MPP
13   (5)          (田中a∨鈴木a)              4&E
13   (6)         ~~田中a∨鈴木a               5DN
13   (7)          ~田中a→鈴木a               6含意の定義
  8  (8)          ~田中a                   A
138  (9)               鈴木a               78MPP
138  (ア)           犯人a&鈴木a               39&I
13   (イ)          ~田中a→(犯人a& 鈴木a)        8アCP
1    (ウ)     犯人a→[~田中a→(犯人a& 鈴木a)]       3イCP
   エ (エ)     犯人a& ~田中a                   A
   エ (オ)     犯人a                         エ&E
1  エ (カ)          ~田中a→(犯人a& 鈴木a)        ウオMPP
   エ (キ)          ~田中a                   エ&E
1  エ (ク)                犯人a& 鈴木a         カキMPP
1    (ケ)    (犯人a&~田中a)→(犯人a& 鈴木a)        エクCP
13   (コ)                    ~(田中a& 鈴木a)  4&E
13   (サ)                     ~田中a∨~鈴木a   コ、ド・モルガンの法則
13   (シ)                      田中a→~鈴木a   サ含意の定義
1    (ス)                 犯人a→(田中a→~鈴木a)  3シCP
    セ(セ)     犯人a& 田中a                    A
    セ(ソ)     犯人a                         セ&E
1   セ(タ)                      田中a→~鈴木a   スソMPP
    セ(チ)          田中a                    セ&E
1   セ(ツ)                          ~鈴木a   タチMPP
1   セ(テ)                      犯人a&~鈴木a   セツ&I
1    (ト)    (犯人a& 田中a)→(犯人a&~鈴木a)        セテCP
1    (ナ)    (犯人a&~田中a)→(犯人a& 鈴木a)&
            (犯人a& 田中a)→(犯人a&~鈴木a)        ケト&I
1    (ニ)∀x{[(犯人x&~田中x)→(犯人x& 鈴木x)]&
           [(犯人x& 田中x)→(犯人x&~鈴木x)]}      ナUI
(ⅱ)
1    (1)∀x{[(犯人x&~田中x)→(犯人x& 鈴木x)]&
           [(犯人x& 田中x)→(犯人x&~鈴木x)]}      A
1    (2)    (犯人a&~田中a)→(犯人a& 鈴木a)&
            (犯人a& 田中a)→(犯人a&~鈴木a)        1UE
1    (3)    (犯人a&~田中a)→(犯人a& 鈴木a)        2&E
 4   (4)     犯人a                         A
  5  (5)         ~田中a                    A
 45  (6)     犯人a ~田中a                    45&I
145  (7)                犯人a& 鈴木a         36MPP
145  (8)                     鈴木a         7&E
14   (9)         ~田中a→鈴木a                58CP
14   (ア)          田中a∨鈴木a                9含意の定義
   イ (イ)    (犯人a& 田中a)→(犯人a&~鈴木a)        2&E
    ウ(ウ)          田中a                    A
 4  ウ(エ)     犯人a& 田中a                    4ウ&I
14  ウ(カ)                犯人a&~鈴木a         イエMPP
14  ウ(キ)                    ~鈴木a         カ&E
14   (ク)          田中a→~鈴木a               ウキCP
14   (ケ)         ~田中a∨~鈴木a               ク含意の定義
14   (コ)        ~(田中a& 鈴木a)              ケ、ド・モルガンの法則
14   (サ)         (田中a∨ 鈴木a)&~(田中a&鈴木a)   アコ&I
1    (シ)     犯人a→[(田中a∨ 鈴木a)&~(田中a&鈴木a)]  4サCP
1    (ス) ∀x{犯人x→[(田中x∨ 鈴木x)&~(田中x&鈴木x)]} シUI
従って、
(02)により、
(03)
① ∀x{犯人x→[(田中x∨鈴木x)&~(田中x&鈴木x)]}
② ∀x{[(犯人x&~田中x)→(犯人x&鈴木x)]&[(犯人x&田中x)→(犯人x&~鈴木x)]}
において、
①=② である。
然るに、
(02)により、
(04)
同じ計算」で、
「ド・モルガンの法則」や、「含意の定義」の「定理(公式)」を用いないことにする。
(05)
(ⅰ)
1          (1)  ∀x{犯人x→[(田中x∨ 鈴木x)&~(田中x&鈴木x)]} A
1          (2)      犯人a→[(田中a∨ 鈴木a)&~(田中a&鈴木a)]  1UE
 3         (3)     犯人a                          A
13         (4)          (田中a∨ 鈴木a)&~(田中a&鈴木a)   23MPP
13         (5)           田中a∨ 鈴木a               4&E
  6        (6)          ~田中a&~鈴木a               A
   7       (7)           田中a                    A
  6        (8)          ~田中a                    6&E
  67       (9)           田中a&~田中a               78&I
   7       (ア)        ~(~田中a&~鈴木a)              69RAA
    イ      (イ)                鈴木a               A
  6        (ウ)               ~鈴木a               6&E
  6 イ      (エ)           鈴木a&~鈴木a               イウ&I
    イ      (オ)        ~(~田中a&~鈴木a)              6エRAA
13         (カ)        ~(~田中a&~鈴木a)              57アイオ∨E
     キ     (キ)          ~田中a                    A
      ク    (ク)               ~鈴木a               A
     キク    (ケ)          ~田中a&~鈴木a               キク&I
13   キク    (コ)        ~(~田中a&~鈴木a)&(~田中a&鈴木a)   カケ&I
13   キ     (サ)              ~~鈴木a               クコRAA
13   キ     (シ)                鈴木a               サDN
13   キ     (ス)            犯人a&鈴木a               3シ&I
13         (セ)      ~田中a→(犯人a&鈴木a)              キスCP
1          (ソ) 犯人a→[~田中a→(犯人a&鈴木a)]             3セCP
       タ   (タ) 犯人a& ~田中a                        A
       タ   (チ) 犯人a                              タ&E
1      タ   (ツ)      ~田中a→(犯人a&鈴木a)              ソチMPP
       タ   (テ)      ~田中a                        タ&E
1      タ   (ト)           (犯人a&鈴木a)              ツテMPP
1          (ナ)(犯人a&~田中a)→(犯人a&鈴木a)              タトCP
13         (ニ)                     ~(田中a&鈴木a)   4&E
        ヌ  (ヌ)                       田中a        A
         ネ (ネ)                           鈴木a    A
        ヌネ (ノ)                       田中a&鈴木a    ヌネ&I
13      ヌネ (ハ)           ~(田中a&鈴木a)&(田中a&鈴木a)   ニノ&I
13      ヌ  (ヒ)                          ~鈴木a    ネハRAA
13      ヌ  (フ)                      犯人a&~鈴木a    3ヒ&I
13         (ヘ)                 田中a→(犯人a&~鈴木a)   ヌフCP
1          (ホ)            犯人a→[田中a→(犯人a&~鈴木a)]  3ヘCP
          マ(マ)            犯人a& 田中a              A
          マ(ミ)            犯人a                   マ&E
1         マ(ム)                 田中a→(犯人a&~鈴木a)   ホミMPP
1         マ(メ)                 田中a              マ&E
1         マ(モ)                      犯人a&~鈴木a    ムメMPP
1          (ヤ)           (犯人a&田中a)→(犯人a&~鈴木a)   マモCP
1          (ラ)   [(犯人a&~田中a)→(犯人a& 鈴木a)]&
                 [(犯人a& 田中a)→(犯人a&~鈴木a)]        ナヤ&I
1          (リ)∀x{[(犯人x&~田中x)→(犯人x& 鈴木x)]&
                 [(犯人x& 田中x)→(犯人x&~鈴木x)]}       ラUI
(ⅱ)
1          (1)∀x{[(犯人x&~田中x)→(犯人x& 鈴木x)]&
                 [(犯人x& 田中x)→(犯人x&~鈴木x)]}       A
1          (2)   [(犯人a&~田中a)→(犯人a& 鈴木a)]&
                 [(犯人a& 田中a)→(犯人a&~鈴木a)]        1UE
1          (3)    (犯人a&~田中a)→(犯人a& 鈴木a)         2&E
 4         (4)     犯人a                          A
  5        (5)         ~田中a                     A
 45        (6)     犯人a&~田中a                     45&I
145        (7)                犯人a& 鈴木a          36MPP
145        (8)                     鈴木a          7&E
14         (9)         ~田中a→ 鈴木a                58CP
   ア       (ア)         ~田中a&~鈴木a                A
   ア       (イ)         ~田中a                     ア&E
14 ア       (ウ)               鈴木a                9イMPP
   ア       (エ)              ~鈴木a                ア&E
14 ア       (オ)          鈴木a&~鈴木a                ウエ&I
14         (カ)       ~(~田中a&~鈴木a)               アオRAA
    キ      (キ)        ~(田中a∨ 鈴木a)               A
     ク     (ク)          田中a                     A
     ク     (ケ)          田中a∨ 鈴木a                ク∨I
    キク     (コ)        ~(田中a∨ 鈴木a)&(田中a∨ 鈴木a)    キケ&I
    キ      (サ)         ~田中a                     クコRAA
      シ    (シ)               鈴木a                A
      シ    (ス)          田中a∨ 鈴木a                シ∨I
    キ シ    (セ)        ~(田中a∨ 鈴木a)&(田中a∨ 鈴木a)    キシ&I
    キ      (ソ)              ~鈴木a                シセRAA
    キ      (タ)         ~田中a&~鈴木a                サソ&I
14  キ      (チ)       ~(~田中a&~鈴木a)&(~田中a&~鈴木a)   カタ&I
14         (ツ)       ~~(田中a∨ 鈴木a)               キチRAA
14         (テ)          田中a∨ 鈴木a                ツDN
1          (ト)    (犯人a& 田中a)→(犯人a&~鈴木a)         2&E
       ナ   (ナ)          田中a                     A
 4     ナ   (ニ)     犯人a& 田中a                     4ナ&I
14     ナ   (ヌ)                犯人a&~鈴木a          トニMPP
14     ナ   (ネ)                    ~鈴木a          ヌ&E
14         (ノ)          田中a→~鈴木a                ナネCP
        ハ  (ハ)          田中a& 鈴木a                A
        ハ  (ヒ)          田中a                     ハ&E
14      ハ  (フ)              ~鈴木a                ノヒMPP
        ハ  (ヘ)               鈴木a                ハ&E
14      ハ  (ホ)              ~鈴木a&鈴木a            フヘ&I
14         (マ)        ~(田中a& 鈴木a)               ハホRAA
14         (ミ)         (田中a∨ 鈴木a)&~(田中a&鈴木a)    テマ&I
1          (ム)    犯人a→[(田中a∨ 鈴木a)&~(田中a&鈴木a)]   4ミCP
1          (メ) ∀x{犯人x→[(田中x∨ 鈴木x)&~(田中x&鈴木x)]}  ムUI
従って、
(05)により、
(06)
① ∀x{犯人x→[(田中x∨鈴木x)&~(田中x&鈴木x)]}
② ∀x{[(犯人x&~田中x)→(犯人x&鈴木x)]&[(犯人x&田中x)→(犯人x&~鈴木x)]}
において、
①=② である。
従って、
(03)(06)により、
(07)
いずれにせよ、
① ∀x{犯人x→[(田中x∨鈴木x)&~(田中x&鈴木x)]}
② ∀x{[(犯人x&~田中x)→(犯人x&鈴木x)]&[(犯人x&田中x)→(犯人x&~鈴木x)]}
において、
①=② である。
従って、
(07)により、
(08)
「日本語に翻訳」すると、
① すべてのxについて{xが犯人であるならば、[(xは田中であるか、または、鈴木である)が、(xが田中であって、尚且つ、xが鈴木である)ということはない]}。
② すべてのxについて{[(xが犯人であって、xが田中ではない)ならば、(xは犯人であって、xは鈴木であり)]、尚且つ、[(xが犯人であって、xが田中である)ならば、(xは犯人であって、xは鈴木ではない)]}
において、
①=② である。
従って、
(08)により、
(09)
「普通の日本語(日常言語)に翻訳」すると、
①「犯人は、田中か鈴木であるが、田中が犯人で、その上、鈴木も犯人である、ということはない。」
②「犯人が田中でないならば、犯人は鈴木であり、犯人が田中であるならば、犯人は鈴木ではない。」
において、
①=② である。
従って、
(07)(08)(09)により、
(10)
① ∀x{犯人x→[(田中x∨鈴木x)&~(田中x&鈴木x)]}
② ∀x{[(犯人x&~田中x)→(犯人x&鈴木x)]&[(犯人x&田中x)→(犯人x&~鈴木x)]}
という「述語論理(数学語)」は、
③「犯人は、田中か鈴木の、単独犯である。」
という「意味」である。
従って、
(09)(10)により、
(11)
①「犯人は、田中か鈴木であるが、田中が犯人で、その上、鈴木も犯人である、ということはない。」
②「犯人が田中でないならば、犯人は鈴木であり、犯人が田中であるならば、犯人は鈴木ではない。」
③「犯人は、田中か鈴木の、単独犯である。」
において、
①=②=③ である。
然るに、
(12)
「グーグルの生成AI(Gemini)」に、
① ∀x{犯人x→[(田中x∨鈴木x)&~(田中x&鈴木x)]}
② ∀x{[(犯人x&~田中x)→(犯人x&鈴木x)]&[(犯人x&田中x)→(犯人x&~鈴木x)]}
という「述語論理式」を読めるか、どうかと、「質問」したところ、

(13)
次の2つの日本語は、意味としては、同じですか?
①「犯人は、田中か鈴木であるが、田中が犯人で、その上、鈴木も犯人である、ということはない。」
②「犯人が田中でないならば、犯人は鈴木であり、犯人が田中であるならば、犯人は鈴木ではない。」
という風に、「質問」をしたところ、
いいえ、2つの日本語は意味が異なります
①「犯人は、田中か鈴木であるが、田中が犯人で、その上、鈴木も犯人である、ということはない。」
この文は、犯人が田中であるか鈴木であるかのいずれか一方であることを示していますが、両方が同時に犯人である可能性は否定していません。つまり、共犯はあり得るということです。
②「犯人が田中でないならば、犯人は鈴木であり、犯人が田中であるならば、犯人は鈴木ではない。」 この文は、犯人が田中であるか鈴木であるかの否定的な論理関係を表しています。つまり、どちらか一方が犯人であり、両方が同時に犯人であることも、どちらも犯人ではないことも有り得ません。
従って、
(10)~(13)により、
(14)
「グーグルの生成AI(Gemini)」は、
① ∀x{犯人x→[(田中x∨鈴木x)&~(田中x&鈴木x)]}
② ∀x{[(犯人x&~田中x)→(犯人x&鈴木x)]&[(犯人x&田中x)→(犯人x&~鈴木x)]}
という「述語論理式」も、
①「犯人は、田中か鈴木であるが、田中が犯人で、その上、鈴木も犯人である、ということはない。」
②「犯人が田中でないならば、犯人は鈴木であり、犯人が田中であるならば、犯人は鈴木ではない。」
という「日本語」も、「両方とも、読めない」ということになる。
然るに、
(15)
現在の情報検索や、自然言語処理は、基本的に論理で処理させることを当面諦めて、統計と確率の手法でAIに言語を学習させようとしています。つまり文章の意味はわからなくても、その文章に出てくる既知の単語とその組合せから統計的に推測して、正しそうな回答を導き出そうとしているのです(AI vs. 教科書が読めない子供たち、新井紀子、2018年、122頁)。
(16)
統計と確率なら案外当たる
前述したとおり、現在、自然言語処理で成功した企業は、皆、この失敗から学んでいます。大量の常識の暗記と簡単な論理推論による質疑応答や自動翻訳を実現することに見切りをつけた後、数学に残された別の言葉でこの難題に挑みました。統計と確率です。ただし、統計では論理のような確実な推論は難しい。さらには、見たことがない例に対してどう判断するかは予想がつきません。けれども、結構当たります。そうなのです。論理も理解もないのに、「結構当たる」のです(AI vs. 教科書が読めない子供たち、新井紀子、2018年、127頁)。
従って、
(14)(15)(16)により、
(17)
「人工知能(AI)の研究者」は、「人工知能(AI)」に対して、
① ∀x{犯人x→[(田中x∨鈴木x)&~(田中x&鈴木x)]}
② ∀x{[(犯人x&~田中x)→(犯人x&鈴木x)]&[(犯人x&田中x)→(犯人x&~鈴木x)]}
といい「論理式」を、「理解」させることを、諦めてしまった
という、ことになる。


(1342)「しばらく、ブログを更新できない理由」。

2024-04-30 07:01:17 | お知らせ

ただ今、第二回目の口頭弁論の「準備書面」を作成中(いい感じで書けています)であるため、
しばらくの間、ブログを書かないことを、お知らせします。


(1241)「唯一のxがFである」の「述語論理」(Ⅱ)。

2024-04-01 12:45:25 | 論理

(01)
「一昨日(令和6年3月30日)の記事」でも示した通り、
{xの変域}={a,b,c}
であるとして、
⑪ ∃x∃y(Fx&Fy)
であるならば、
①(Fa&Fa)
②(Fb&Fb)
③(Fc&Fc)
④(   Fb&Fc)
⑤(Fa   &Fc)
⑥(Fa&Fb   )
⑦(Fa&Fb&Fc)
といふ「7通り」が、「真」であることが「可能」である。
従って、
(01)により、
(02)
⑫ ∃x∃y{(Fx&Fy)&(xy)}
といふ「論理式」ではなく
⑪ ∃x∃y{(Fx&Fy)&(xy)}
といふ「論理式」が「真」であるならば、
①(Fa&Fa)
②(Fb&Fb)
③(Fc&Fc)
といふ「3通りの内の、どれか1つが真」である。
従って、
(01)(02)により、
(03)
⑪ ∃x∃y{(Fx&Fy)&(xy)}
といふ「論理式」ではなく
⑫ ∃x∃y{(Fx&Fy)&(xy)}
といふ「論理式」が「真」であるならば、
④(   Fb&Fc)
⑤(Fa   &Fc)
⑥(Fa&Fb   )
⑦(Fa&Fb&Fc)
といふ「4通りの内の、どれか1つが真」である。
然るに、
(04)
④(   Fb&Fc)
⑤(Fa   &Fc)
⑥(Fa&Fb   )
⑦(Fa&Fb&Fc)
といふ「4通りの内の、どれか1つが真」である。
といふことは、{a,b,c}の中の、
⑫「2個以上の個体が、Fである。」
といふ、ことである。
従って、
(03)(04)により、
(05)
⑫  ∃x∃y{(Fx&Fy)&(x≠y)}
⑬ ~∃x∃y{(Fx&Fy)&(x≠y)}
といふ「論理式」は、それぞれ、
⑫「2個以上の個体が、Fである。」
⑬「2個以上の個体が、Fである。」といふことはない。
といふ「意味」である。
然るに、
(06)
(ⅲ)
1(1)~∃x∃y{(Fx&Fy)&(x≠y)} A
1(2)∀x~∃y{(Fx&Fy)&(x≠y)} 1量化子の関係
1(3)∀x∀y~{(Fx&Fy)&(x≠y)} 2量化子の関係
1(4)  ∀y~{(Fa&Fy)&(a≠y)} 3UE
1(5)    ~{(Fa&Fb)&(a≠b)} 4UE
1(6)     ~(Fa&Fb)∨(a=b)  5ド・モルガンの法則
1(7)      (Fa&Fb)→(a=b)  6含意の定義
1(8)   ∀y{(Fa&Fy)→(a=y)} 7UI
1(9) ∀x∀y{(Fx&Fy)→(x=y)} 8UI
(ⅳ)
1(1) ∀x∀y{(Fx&Fy)→(x=y)} A
1(2)   ∀y{(Fa&Fy)→(a=y)} 1UE
1(3)      (Fa&Fb)→(a=b)  2UE
1(4)     ~(Fa&Fb)∨(a=b)  3含意の定義
1(5)    ~{(Fa&Fb)&(a≠b)} 4ド・モルガンの法則
1(6)  ∀y~{(Fa&Fy)&(a≠y)} 5UI
1(7)∀x∀y~{(Fx&Fy)&(x≠y)} 6UI
1(8)∀x~∃y{(Fx&Fy)&(x≠y)} 7量化子の関係
1(9)~∃x∃y{(Fx&Fy)&(x≠y)} 8量化子の関係
従って、
(05)(06)により、
(07)
⑬ ~∃x∃y{(Fx&Fy)&(x≠y)}
⑭  ∀x∀y{(Fx&Fy)→(x=y)}
に於いて、
⑬=⑭ である。
従って、
(05)(06)(07)により、
(08)
⑬ ~∃x∃y{(Fx&Fy)&(x≠y)}
⑭  ∀x∀y{(Fx&Fy)→(x=y)}
といふ「論理式」、すなはち、
⑬「あるxとあるyについて(xがFであって、yもFであって、xとyが「同一」ではない。」といふことはない。
⑭「すべてのxとyについて(xがFであって、yもFであるならば、xとyは、「同一」である)。」
といふ「論理式」は、「両方」とも、
⑬「2個以上の個体が、Fである。」といふことはない。
⑭「2個以上の個体が、Fである。」といふことはない。
といふ「意味」である。
然るに、
(09)
⑭ ∃x(Fx)
といふ「論理式」、すなはち、
⑭「(Fであるx)が存在する。」
といふ「論理式」は、
⑭「1個以上の個体が、Fである。」
といふ「意味」である。
従って、
(08)(09)により、
(10)
⑭ ∃x(Fx)&∀x∀y{(Fx&Fy)→(x=y)}
といふ「論理式」は、
⑭「1個以上の個体が、Fである」が、「2個以上の個体が、Fである」といふことはない。
といふ「意味」である。
然るに、
(11)
(ⅳ)
1  (1)∃xFx&∀x∀y(Fx&Fy→x=y) A
1  (2)∃xFx                 1&E
 3 (3)  Fa                 A
1  (4)     ∀x∀y(Fx&Fy→x=y) 1&E
1  (5)       ∀y(Fa&Fy→a=y) 4UE
1  (6)          Fa&Fb→a=b  5UE
  7(7)             Fb      A
 37(8)          Fa&Fb      37&I
137(9)                a=b  68MPP
13 (ア)          Fb→a=b     79CP
13 (イ)       ∀y(Fy→a=y)    アUI
13 (ウ)    Fa&∀y(Fy→a=y)    3イ&I
13 (エ) ∃x{Fx&∀y(Fy→x=y)}   ウEI
1  (オ) ∃x{Fx&∀y(Fy→x=y)}   23エEE
(ⅴ)
1  (1)∃x{Fx&∀y(Fy→x=y)}    A
 2 (2)   Fa&∀y(Fy→a=y)     A
 2 (3)      ∀y(Fy→a=y)     2&E
 2 (4)         Fb→a=b      3UE
  5(5)      Fa&Fb          A
  5(6)         Fb          5&E
 25(7)            a=b      46MPP
 2 (8)      Fa&Fb→a=b      57CP
 2 (9)   ∀y(Fa&Fy→a=y)     8UI
 2 (ア) ∀x∀y(Fx&Fy→x=y)     9UI
 2 (イ)Fa                   2&E
 2 (ウ)∃xFx                 イEI
 2 (エ)∃xFx&∀x∀y(Fx&Fy→x=y) アウ&I
1  (ウ)∃xFx&∀x∀y(Fx&Fy→x=y) 12エEE
従って、
(11)により、
(12)
⑭ ∃xFx&∀x∀y(Fx&Fy→x=y)
⑮ ∃x{Fx&∀y(Fy→x=y)}
に於いて、
⑭=⑮ である。
従って、
(10)(11)(12)により、
(13)
⑭ ∃x(Fx)&∀x∀y{(Fx&Fy)→(x=y)}
⑮ ∃x{Fx&∀y(Fy→x=y)}
といふ「論理式」、すなはち、
⑭「あるxはFであり、すべてのxとyについて(xがFであって、yもFであるならば、xとyは、「同一」である)。」
⑮「あるxはFであり、すべてのyについて(yがFであるならば、xとyは、「同一」である)。」
といふ「論理式」は、「両方」とも、
⑭「1個以上の個体が、Fである」が、「2個以上の個体が、Fである」といふことはない。
⑮「1個以上の個体が、Fである」が、「2個以上の個体が、Fである」といふことはない。
といふ「意味」である。
然るに、
(14)
⑮「1個以上の個体が、Fである」が、「2個以上の個体が、Fである」といふことはない。
といふことは、
⑮「唯一の個体だけが、Fである。」
といふ「意味」である。
従って、
(13)(14)により、
(15)
⑮ ∃x{Fx&∀y(Fy→x=y)}
といふ「論理式」、すなはち、
⑮「あるxはFであり、すべてのyについて(yがFであるならば、xとyは、「同一」である)。」
といふ「論理式」は、
⑮「唯一の個体だけが、Fである。」
といふ「意味」である。
従って、
(15)により、
(16)
⑮ ∃x{偶素数x&∀y(偶素数y→x=y=2)}
といふ「論理式」は、
⑮「偶数の素数は、2だけである。」
といふ「意味」である。
然るに、
(15)(16)により、
(17)
「自然2が、個体である」といふのは「ヲカシイ」ものの、
「述語論理」では、「xやyやz」を「個体変数(individual variable)」と言ふ。


(1240)∃x(Fx)├ ∃x∃y(Fx&Fy)!?

2024-03-30 16:49:38 | 論理

(01)
142 ∃x(Fx)├ ∃x∃y(Fx&Fy)
1 (1)  ∃x(Fx)    A
 2(2)     Fa     A
 2(3)     Fa&Fa  22&I
 2(4)  ∃y(Fa&Fy) 3EI
 2(5)∃x∃y(Fx&Fy) 4EI
1 (6)∃x∃y(Fx&Fy) 125EE
(この結果は事実上、強化して相互導出可能にすることができる。)この連式の妥当性から、
ひとつだけの対象がFを持っているならば、∃x∃y(Fx&Fy)ということが帰結する。
言い換えると、相異なる変数「x」と「y」を用いる場合に、そのことから、それに対応する異なった対象が存在する
ということは、帰結しないのである
(E.J.レモン著、論理学初歩、竹尾治一郎・浅野楢英、1973年、210頁)。
然るに、
(02)
{xの変域}={a,b,c}
であるならば、
(ⅰ) ∃y(Fy)
(ⅱ)(Fa∨Fb∨Fc)
に於いて、
(ⅰ)=(ⅱ)である。
然るに、
(03)
「選言(∨)の真理表」により、
(ⅱ)(Fa∨Fb∨Fc)
といふ「論理式」は、
①(Fa      )∨
②(   Fb   )∨
③(      Fc)∨
④(Fa&Fb   )∨
⑤(Fa   &Fc)∨
⑥(   Fb&Fc)∨
⑦(Fa&Fb&Fc)
といふ「論理式」に「等しい」。
従って、
(02)(03)により、
(04)
{xの変域}={a,b,c}
であるならば、
∃y(Fy)は、
といふ「論理式」は、
①(Fa)
②   (Fb)
③      (Fc)
④(Fa&Fb   )
⑤(Fa   &Fc)
⑥(   Fb&Fc)
⑦(Fa&Fb&Fc)
といふ「7通りの内の、どれか1つ」である。
然るに、
(05)
「冪等律」により、
①(Fa)
②(Fb)
③(Fc)
といふ「3つの論理式」は、それぞれ、
①(Fa&Fa)
②(Fb&Fb)
③(Fc&Fc)
といふ「3つの論理式」に「等しい」。
従って、
(04)(05)により、
(06)
{xの変域}={a,b,c}
であるならば、
∃y(Fy)は、
といふ「論理式」は、
①(Fa&Fa)
②(Fb&Fb)
③(Fc&Fc)
④(   Fb&Fc)
⑤(Fa   &Fc)
⑥(Fa&Fb   )
⑦(Fa&Fb&Fc)
といふ「7通りの内の、どれか1つ」である。
然るに、
(07)
{xの変域}={a,b,c}
であるならば、
∃x{∃y(Fx&Fy)}=
{(Fx&Fa)∨(Fx&Fb)∨(Fx&Fc)}∨
{(Fx&Fa)∨(Fx&Fb)∨(Fx&Fc)}∨
{(Fx&Fa)∨(Fx&Fb)∨(Fx&Fc)}
であるため、
∃x{∃y(Fx&Fy)}=
{(Fa&Fa)∨(Fa&Fb)∨(Fa&Fc)}∨
{(Fb&Fa)∨(Fb&Fb)∨(Fb&Fc)}∨
{(Fc&Fa)∨(Fc&Fb)∨(Fc&Fc)}
である。
然るに、
(08)
「交換法則」により、
①(Fa&Fb)
②(Fc&Fa)
③(Fa&Fc)
④(Fc&Fa)
⑤(Fb&Fc)
⑥(Fc&Fb)
に於いて、
①=④
②=⑤
③=⑥
従って、
(07)(08)により、
(09)
{xの変域}={a,b,c}
であるならば、
∃x{∃y(Fx&Fy)}=
{(Fa&Fa)∨(Fa&Fb) ∨(Fa&Fc)}∨
{(Fb&Fb)∨(Fb&Fc)}∨
{(Fc&Fc)}
である。
従って、
(09)により、
(10)
「交換法則・結合法則」により、
∃x{∃y(Fx&Fy)}=
{(Fa&Fa)∨(Fb&Fb)∨(Fc&Fc)}∨{(Fa&Fb)∨(Fa&Fc)∨(Fb&Fc)}
である。
然るに、
(11)
1          (1){(Fa&Fa)∨(Fb&Fb) ∨(Fc&Fc)}∨{(Fa&Fb)∨(Fa&Fc) ∨(Fb&Fc)} A
 2         (2){(Fa&Fa)∨(Fb&Fb) ∨(Fc&Fc)}                            A
 2         (3){(Fa&Fa)∨(Fb&Fb)}∨(Fc&Fc)                             2結合法則
  4        (4){(Fa&Fa)∨(Fb&Fb)}                                     A
   5       (5) (Fa&Fa)                                              A
   5       (6)  Fa                                                  5&E
   5       (7)  Fa∨Fb                                               6∨I
   5       (8)  Fa∨Fb∨Fc                                            7∨I
    9      (9)         (Fb&Fb)                                      A
    9      (ア)          Fb                                          9&E
    9      (イ)       Fa∨Fb                                          ア∨I
    9      (ウ)       Fa∨Fb∨Fc                                       イ∨I
  4        (エ)       Fa∨Fb∨Fc                                       4589ウ∨E
     オ     (オ)                  (Fc&Fc)                             A
     オ     (カ)                   Fc                                 オ&E
      オ     (キ)                Fb∨Fc                                 カ∨I
     オ     (ク)             Fa∨Fb∨Fc                                 キ∨I
 2         (ケ)             Fa∨Fb∨Fc                                 24エオク∨E
      コ    (コ)                           {(Fa&Fb)∨(Fa&Fc) ∨(Fb&Fc)} A
      コ    (サ)                           {(Fa&Fb)∨(Fa&Fc)}∨(Fb&Fc)  コ結合法則
       シ   (シ)                           {(Fa&Fb)∨(Fa&Fc)}          A
        ス  (ス)                             Fa&Fb                    A
        ス  (セ)                             Fa                       ス&E
        ス  (ソ)                             Fa∨Fb                    セ∨I
        ス  (タ)                             Fa∨Fb∨Fc                 ソ∨I
         チ (チ)                                     Fa&Fc            A
         チ (ツ)                                     Fa               チ&E
         チ (テ)                                     Fa∨Fb            ツ∨I
         チ (ト)                                     Fa∨Fb∨Fc         テ∨I
       シ   (ナ)                                     Fa∨Fb∨Fc         シスタチト∨E
          ニ(ニ)                                              (Fb&Fc) A
          ニ(ヌ)                                               Fb     ニ&E
          ニ(ネ)                                            Fa∨Fb     ヌ∨I
          ニ(ノ)                                            Fa∨Fb∨Fc  ネ∨I
      コ    (ハ)                             Fa∨Fb∨Fc                 コシナニノ∨E
1          (ヒ)  Fa∨Fb∨Fc                                            12ケコハ∨E
従って、
(11)により、
(12)
①{(Fa&Fa)∨(Fb&Fb)∨(Fc&Fc)}∨{(Fa&Fb)∨(Fa&Fc)∨(Fb&Fc)}
② (Fa∨Fb∨Fc)
に於いて、
①⇒② である。
従って、
(10)(11)(12)により、
(13)
{xの変域}={a,b,c}
であるならば、
∃x{∃y(Fx&Fy)}
といふ「論理式」も、
①(Fa&Fa)
②(Fb&Fb)
③(Fc&Fc)
④(   Fb&Fc)
⑤(Fa   &Fc)
⑥(Fa&Fb   )
⑦(Fa&Fb&Fc)
といふ「7通りの内の、どれか1つ」である。
従って、
(06)(13)により、
(14)
{xの変域}={a,b,c}
であるならば、
∃y(Fy)
といふ「論理式」と、
∃x{∃y(Fx&Fy)}
といふ「論理式」は、両方とも
①(Fa&Fa)
②(Fb&Fb)
③(Fc&Fc)
④(   Fb&Fc)
⑤(Fa   &Fc)
⑥(Fa&Fb   )
⑦(Fa&Fb&Fc)
といふ「7通りの内の、どれか1つ」である。
従って、
(01)(14)により、
(15)
ひとつだけの対象が、性質Fを持っているならば、∃x{∃y(Fx&Fy)}ということが帰結する。
言い換えると、相異なる変数「x」と「y」を用いる場合に、そのことから、それに対応する異なった対象が存在する
ということは、帰結しないのである
(E.J.レモン著、論理学初歩、竹尾治一郎・浅野楢英、1973年、210頁)。
といふ「説明」は、「正しい」。


(1339)「この問題の正解率は64.5%でした。」と「述語論理」(Ⅱ)。

2024-03-28 19:06:48 | 論理

(01)
 男子=男の子である。
~男子=男の子でない。
 女子=女の子である。
~女子=女の子でない。
 帽子=帽子をかぶっている。
~帽子=帽子をかぶっていない。
 スニ=スニ―カーを履いている。
~スニ=スニーカーを履いていない。
とする。
従って、
(01)により、
(02)
(α) ∀x(~帽子x→女子x)
(β)~∃x( スニx&男子x)
(1) ∀x( 男子x→帽子x)
(2)~∃x( 帽子x&女子x)
(3)~∃x( 帽子x&スニx)
といふ「述語論理式」は、
(α)帽子をかぶっていない子どもは、みんな女の子です
(β)スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
といふ「日本語」に「等しい」。
然るに、
(03)
(Γ)∀x(男子x⇔~女子x)
(〃)男の子であるならば、女の子ではなく、女の子でないならば、男の子である。
を「公理」とする。
然るに、
(04)
(α)
1 (1)∀x(~帽子x→女子x) A
1 (2)   ~帽子a→女子a  1UE
  (3)∀x(男子x⇔~女子x) 公理
  (4)   男子a⇔~女子a  UE
  (5)   男子a→~女子a  4&E(Df.⇔)
 6(6)   男子a       A
 6(7)       ~女子a  56MPP
16(8)  ~~帽子a      17MPP
16(9)    帽子a      8DN
1 (ア)    男子a→帽子a  69CP
1 (イ) ∀x(男子x→帽子x) アUI
(〃)
1 (1)∀x(男子x→ 帽子x) A
1 (2)   男子a→ 帽子a  1UE
  (3)∀x(男子x⇔~女子x) 公理
  (4)   男子a⇔~女子a  UE
  (5)   ~女子a→男子a  4&E(Df.⇔)
 6(6)       ~帽子a  A
16(7)   ~男子a      26MTT
16(8)  ~~女子a      57MTT
16(9)    女子a      8DN
1 (ア)   ~帽子a→女子a  69CP
1 (イ)∀x(~帽子x→女子x) アUI
従って、
(02)(03)(04)により、
(05)
(α) ∀x(~帽子x→女子x)
(β)~∃x( スニx&男子x)
(1) ∀x( 男子x→帽子x)
(2)~∃x( 帽子x&女子x)
(3)~∃x( 帽子x&スニx)
といふ「述語論理式」は、
(α) ∀x( 男子x→帽子x)
(β)~∃x( スニx&男子x)
(1) ∀x( 男子x→帽子x)
(2)~∃x( 帽子x&女子x)
(3)~∃x( 帽子x&スニx)
といふ「述語論理式」に「等しい」。
然るに、
(06)
(β)
1  (1)~∃x(スニx& 男子x) A
1  (2)∀x~(スニx& 男子x) 1量化子の関係
1  (3)  ~(スニa& 男子a) 2UE
1  (4)   ~スニa∨~男子a  3ド・モルガンの法則
1  (5)    スニa→~男子a  4含意の定義
   (6) ∀x(男子x⇔~女子x) 公理
   (7)    男子a⇔~女子a  6UE
   (8)    ~女子a→男子a  7&E(Df.⇔)
 9 (9)        ~男子a  A
 9 (ア)   ~~女子a      89MTT
 9 (イ)     女子a      アDN
   (ウ)    ~男子a→女子a  9イCP
  エ(エ)    スニa       A
1 エ(オ)        ~男子a  5エMPP
1 エ(カ)         女子a  ウオMPP
1  (キ)    スニa→ 女子a  エカCP
1  (ク) ∀x(スニx→ 女子x) キUI
(〃)
1  (1) ∀x(スニx→ 女子x) A
1  (2)    スニa→ 女子a  1UE
   (3) ∀x(男子x⇔~女子x) 公理
   (4)    男子a⇔~女子a  3UE
   (5)    男子a→~女子a  4&E(Df.⇔)
 6 (6)         女子a  A
 6 (7)       ~~女子a  6DN
 6 (8)   ~男子a       57MTT
   (9)    女子a→~男子a  68MPP
  ア(ア)    スニa       A
1 ア(イ)         女子a  2アMPP
1 ア(ウ)        ~男子a  9イMPP
1  (エ)    スニa→~男子a  アウCP
1  (オ)   ~スニa∨~男子a  エ含意の定義
1  (カ)  ~(スニa& 男子a) オ、ド・モルガンの法則
1  (キ)∀x~(スニx& 男子x) カUI
従って、
(05)(06)により、
(07)
(α) ∀x(~帽子x→女子x)
(β)~∃x( スニx&男子x)
(1) ∀x( 男子x→帽子x)
(2)~∃x( 帽子x&女子x)
(3)~∃x( 帽子x& スニx)
といふ「述語論理式」は、
(α) ∀x( 男子x→帽子x)
(β) ∀x( スニx→女子x)
(1) ∀x( 男子x→帽子x)
(2)~∃x( 帽子x&女子x)
(3)~∃x( 帽子x&スニx)
といふ「述語論理式」に「等しい」。
然るに、
(08)
(2)
1  (1)~∃x(帽子x& 女子x) A
1  (2)∀x~(帽子x& 女子x) 1量化子の関係
1  (3)  ~(帽子a& 女子a) 2UE
1  (4)   ~帽子a∨~女子a  3ド・モルガンの法則
1  (5)    帽子a→~女子a  4含意の定義
   (6) ∀x(女子x⇔~男子x) 公理
   (7)    女子a⇔~男子a  6UE
   (8)    ~男子a→女子a  7&E(Df.⇔)
 9 (9)        ~女子a  A
 9 (ア)   ~~男子a      89MTT
 9 (イ)     男子a      アDN
   (ウ)    ~女子a→男子a  9イCP
  エ(エ)    帽子a       A
1 エ(オ)        ~女子a  5エMPP
1 エ(カ)         男子a  ウオMPP
1  (キ)    帽子a→ 男子a  エカCP
1  (ク) ∀x(帽子x→ 男子x) キUI
(〃)
1  (1) ∀x(帽子x→ 男子x) A
1  (2)    帽子a→ 男子a  1UE
   (3) ∀x(女子x⇔~男子x) 公理
   (4)    女子a⇔~男子a  3UE
   (5)    女子a→~男子a  4&E(Df.⇔)
 6 (6)         男子a  A
 6 (7)       ~~男子a  6DN
 6 (8)   ~女子a       57MTT
   (9)    男子a→~女子a  68MPP
  ア(ア)    帽子a       A
1 ア(イ)         男子a  2アMPP
1 ア(ウ)        ~女子a  9イMPP
1  (エ)    帽子a→~女子a  アウCP
1  (オ)   ~帽子a∨~女子a  エ含意の定義
1  (カ)  ~(帽子a& 女子a) オ、ド・モルガンの法則
1  (キ)∀x~(帽子x& 女子x) カUI
1  (ク)~∃x(帽子x& 女子x) キ量化子の関係
従って、
(07)(08)により、
(09)
(α) ∀x(男子x→帽子x)
(β) ∀x(スニx→女子x)
(1) ∀x(男子x→帽子x)
(2)~∃x(帽子x&女子x)
(3)~∃x(帽子x&スニx)
といふ「論理式」は、
(α) ∀x(男子x→帽子x)
(β) ∀x(スニx→女子x)
(1) ∀x(男子x→帽子x)
(2) ∀x(帽子x→男子x)
(3)~∃x(帽子x&スニx)
といふ「述語論理式」に「等しい」。
従って、
(05)~(09)により、
(10)
(α) ∀x(~帽子x→女子x)
(β)~∃x( スニx&男子x)
(1) ∀x( 男子x→帽子x)
(2)~∃x( 帽子x&女子x)
(3)~∃x( 帽子x&スニx)
といふ「述語論理式」は、
(α) ∀x(男子x→帽子x)
(β) ∀x(スニx→女子x)
(1) ∀x(男子x→帽子x)
(2) ∀x(帽子x→男子x)
(3)~∃x(帽子x&スニx)
といふ「述語論理式」に「等しい」。
従って、
(10)により、
(11)
(α) ∀x(男子x→帽子x)
(1) ∀x(男子x→帽子x)
(2) ∀x(帽子x→男子x)
に於いて、
(2)は(α)の「逆」であり、
(2)は(1)の「逆」であるが、「逆は、必ずしも、真ではない」。
従って、
(11)により、
(12)
(α)⇔(1)であるが、
(α)→(2)ではない。
然るに、
(13)
1   (1)∀x(男子x→帽子x) A
 2  (2)∀x(スニx→女子x) A
  3 (3)∃x(帽子x&スニx) A
1   (4)   男子a→帽子a  1UE
 2  (5)   スニa→女子a  2UE
   6(6)   帽子a&スニa  A
   6(7)   帽子a      6&E
   6(8)       スニa  6&E
 2 6(9)       女子a  57MPP
 2 6(ア)   帽子a&女子a  79&I
 2 6(イ)∃x(帽子x&女子x) アEI
 23 (ウ)∃x(帽子x&女子x) 36イEE
従って、
(01)(02)(10)(13)により、
(14)
(α)∀x(男子x→帽子x)
(β)∀x(スニx→女子x)
(3)∃x(帽子x&女子x)
といふ「命題」、すなはち、
(α)男の子は、みんな帽子をかぶっています。
(β)スニーカーを履いている子どもは、みんな女の子です。
(γ)帽子をかぶっている女の子もいます。
といふ「命題」は「矛盾」しない。
e.g.
太郎と次郎は、二人とも、野球帽をかぶっているが、スニーカーではなく、スパイクを履いている。
花子は帽子をかぶって、スニーカーを履いているが、桃子は、帽子をかぶらずに、スニーカーを履いている。
従って、
(13)(14)により、
(15)
(α) ∀x(男子x→帽子x)
(β) ∀x(スニx→女子x)
であるからと言って、必ずしも、
(3)~∃x(帽子x&女子x)
(〃)帽子をかぶっている女の子はいません。
といふことには、ならない。
従って、
(02)(10)(11)(15)により、
(16)
(α) ∀x(~帽子x→女子x)
(β)~∃x( スニx&男子x)
(1) ∀x( 男子x→帽子x)
(2)~∃x( 帽子x&女子x)
(3)~∃x( 帽子x&スニx)
といふ「述語論理式」は、
(α)帽子をかぶっていない子どもは、みんな女の子です
(β)スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
といふ「日本語」に「等しく」、
(α)帽子をかぶっていない子どもは、みんな女の子です
(β)スニーカーを履いている男の子は一人もいません。
といふ「命題」が「真(〇)」であるならば、
(1)男の子はみんな帽子をかぶっている。
 だけが、必ず、「真(〇)」である。
従って、
(16)により、
(17)
問題 次の報告から確実に正しいと言えることには〇を、そうでないないものには✕を、左側の空欄に記入して下さい。
   公園に子どもたちが集まっています。
   男の子も女の子もいます。
(α)帽子をかぶっていない子どもは、みんな女の子です。そして、
(β)スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
正しいのは(1)のみです。
(AI vs. 教科書が読めない子供たち、新井紀子、2018年、182・183頁)。
といふ、ことになる。


(1338)「この問題の正解率は64.5%でした。」と「述語論理」。

2024-03-27 13:58:49 | 論理

(01)
問題 次の報告から確実に正しいと言えることには〇を、そうでないないものには✕を、左側の空欄に記入して下さい。
公園に子どもたちが集まっています。
    男の子も女の子もいます。
(α)帽子をかぶっていない子どもは、みんな女の子です。そして、
(β)スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
(AI vs. 教科書が読めない子供たち、新井紀子、2018年、182頁)。
正しいのは(1)のみです。
 ― 中略 ―
この問題の正解率は64.5%でした。入試で問われるスキルは何一つ問うていないのに、
国立Sクラスでは85%が正当した一方、私大B、Cクラスでは正当率が5割を切りました。
では、多くの高校生が憧れる私大Sクラスではどうだったか。国立Sクラスに比べて20ポイントも低い66.8%に留まりました。
どこの大学に入学できるかは、学習量でも知識でも運でもない、論理的な読解と推論の力ではないのか、6000枚の答案をみているうちに、私は確信するようになりました。
(AI vs. 教科書が読めない子供たち、新井紀子、2018年、182頁)。
然るに、
(02)
(α)帽子をかぶっていない子どもは、みんな女の子です。そして、
(β)スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
という「日本語」は、それぞれ、
(α)すべてのxについて(xが帽子をかぶっていないならば、xは女子である)。
(β)(スニーカーを履いているxであって、そのうえ、男子であるx)は存在しない。
(1)すべてのxについて(xが男子ならば、xは帽子をかぶっている)。
(2)(帽子をかぶっているxであって、そのうえ、女子であるx)は存在しない。
(3)(帽子をかぶっていて、その上、スニーカーを履いているx)は存在しない。
という「意味」である。
然るに、
(03)
(α)すべてのxについて(xが帽子をかぶっていないならば、xは女子である)。
(β)(スニーカーを履いているxであって、そのうえ、男子であるx)は存在しない。
(1)すべてのxについて(xが男子ならば、xは帽子をかぶっている)。
(2)(帽子をかぶっているxであって、そのうえ、女子であるx)は存在しない。
(3)(帽子をかぶっていて、その上、スニーカーを履いているx)は存在しない。
という「日本語」は、
(α) ∀x(~帽子x→女子x)。
(β)~∃x(スニx& 男子x)。
(1) ∀x(男子x→ 帽子x)。
(2)~∃x(帽子x& 女子x)。
(3)~∃x(帽子x& スニx)。
という「述語論理式」に「相当」する。
従って、
(02)(03)により、
(04)
(α)帽子をかぶっていない子どもは、みんな女の子です。
(β)スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
という「日本語」は、それぞれ、
(α) ∀x(~帽子x→女子x)。
(β)~∃x(スニx& 男子x)。
(1) ∀x(男子x→ 帽子x)。
(2)~∃x(帽子x& 女子x)。
(3)~∃x(帽子x& スニx)。
という「述語論理式」に「相当」する。
然るに、
(05)
(Γ) ∀x(男子x⇔~女子x)
(〃)∀x{(男子x→~女子x)&(~女子x→男子x)}
(〃)男子ならば、そのときに限って、女子ではない。
という「命題」を、「公理」とする。
然るに、
(06)
「結論」を先に言うと、
(α)帽子をかぶっていない子どもは、みんな女の子です。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
に於いて、
(α)と(1)は「対偶」であり、
(1)と(2)は「 逆 」であり、
(1)と(3)も「 逆 」であり、そのため、
(1)〇
(2)✕
(3)✕
然るに、
(07)
(α)
1 (1)∀x(~帽子x→女子x) A
1 (2)   ~帽子a→女子a  1UE
  (3)∀x(男子x⇔~女子x) 公理
  (4)   男子a⇔~女子a  UE
  (5)   男子a→~女子a  4&E(Df.⇔)
 6(6)   男子a       A
 6(7)       ~女子a  56MPP
16(8)  ~~帽子a      17MPP
16(9)    帽子a      8DN
1 (ア)    男子a→帽子a  69CP
1 (イ) ∀x(男子x→帽子x) アUI
(1)
1 (1)∀x(男子x→ 帽子x) A
1 (2)   男子a→ 帽子a  1UE
  (3)∀x(男子x⇔~女子x) 公理
  (4)   男子a⇔~女子a  UE
  (5)   ~女子a→男子a  4&E(Df.⇔)
6(6)       ~帽子a  A
16(7)   ~男子a      26MTT
16(8)  ~~女子a      57MTT
16(9)    女子a      8DN
1 (ア)   ~帽子a→女子a  69CP
1 (イ)∀x(~帽子x→女子x) アUI
従って、
(04)(07)により、
(08)
(α)∀x(~帽子x→女子x)
(1)∀x(男子x→ 帽子x)
に於いて、すなわち、
(α)帽子をかぶっていない子どもは、みんな女の子です(男の子ではない)。
(1)男の子(女の子でない子ども)はみんな帽子をかぶっている。
に於いて、
(α)と(1)は「対偶」であり、それ故、
(α)と(1)は「等しい」。
然るに、
(09)
(2)
1 (1)~∃x(帽子x&女子x) A
1 (2)∀x~(帽子x&女子x) 1量化子の関係
1 (3)  ~(帽子a&女子a) 1UE
1 (4)  ~帽子a∨~女子a  3ド・モルガンの法則
1 (5)   帽子a→~女子a  4含意の定義
  (6)∀x(男子x⇔~女子x) 公理
  (7)   男子a⇔~女子a  6UE
  (8)   ~女子a→男子a  7&E(Df.⇔)
 9(9)   帽子a       A
19(ア)       ~女子a  59MPP
19(イ)        男子a  8アMPP
1 (ウ)   帽子a→ 男子a  9イCP
1 (エ)∀x(帽子x→ 男子x) ウUI
(Ⅱ)
1 (1)∀x(帽子x→ 男子x) A
1 (2)   帽子a→ 男子a  1UE
  (3)∀x(男子x⇔~女子x) 公理
  (4)   男子a⇔~女子a  3UE
  (5)   男子a→~女子a  4&E(Df.⇔)
 6(6)   帽子a       A
16(7)        男子a  26MPP
16(8)       ~女子a  57MPP
1 (9)   帽子a→~女子a  68CP
1 (ア)  ~帽子a∨~女子a  9含意の定義
1 (イ)  ~(帽子a&女子a) ア、ド・モルガンの法則
1 (ウ)∀x~(帽子x&女子x) イUI
1 (エ)~∃x(帽子x&女子x) ウ量化子の関係
従って、
(09)により、
(10)
(2)~∃x(帽子x&女子x)
(Ⅱ) ∀x(帽子x→男子x)
に於いて、
(2)=(Ⅱ) である。
従って、
(11)
(2)~∃x(帽子x&女子x)
(Ⅱ) ∀x(帽子x→男子x)
(1) ∀x(男子x→帽子x)
に於いて、
(2)=(Ⅱ)であって、
(Ⅱ)は(1)の「逆」であるが、「逆は必ずしも、〇(真)ではない」。
従って、
(04)(11)により、
(12)
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
に於いて、 (2)は(1)の「逆」であるが、「逆は必ずしも、〇(真)ではない」。
然るに、
(13)
(β)スニーカーを履いている男の子は一人もいません。
1 (1)~∃x(スニx&男子x) A
1 (2)∀x~(スニx&男子x) 1量化子の関係
1 (3)  ~(スニa&男子a) 1UE
1 (4)  ~スニa∨~男子a  3ド・モルガンの法則
1 (5)   スニa→~男子a  4含意の定義
  (6)∀x(男子x⇔~女子x) 公理
  (7)   男子a⇔~女子a  6UE
  (8)  ~男子a→ 女子a  7&E(Df.⇔)
 9(9)   スニa       A
19(ア)       ~男子a  59MPP
19(イ)        女子a  8アMPP
1 (ウ)   スニa→ 女子a  9イCP
1 (エ)∀x(スニx→ 女子x) ウUI
(B)スニーカーを履いている子は、みんな女子です。
1  (1)∀x(スニx→ 女子x) A
1  (2)   スニa→ 女子a  1UI
     (3)∀x(男子x⇔~女子x) 公理
   (4)   男子a⇔~女子a  3UE
   (5)   男子a→~女子a  4&E(Df.⇔)
 6 (6)        女子a  A
 6 (7)      ~~女子a  6DN
 6 (8)  ~男子a       57MTT
   (9)   女子a→~男子a  68CP
  ア(ア)   スニa       A
1 ア(イ)        女子a  2アMPP
1 ア(ウ)       ~男子a  9イMPP
1  (エ)   スニa→~男子a  アウCP
1  (オ)  ~スニa∨~男子a  エ含意の定義
1  (カ)  ~(スニa&男子a) オ、ド・モルガンの法則
1  (キ)∀x~(スニx&男子x) カUI
1  (ク)~∃x(スニx&男子x) キ、量化子の関係
従って、
(13)により、
(14)
(β)~∃x(スニx&男子x)
(B) ∀x(スニx→女子x)
に於いて、すなわち、
(β)スニーカーを履いている男の子は一人もいません。
(B)スニーカーを履いている子は、みんな女子です。
に於いて、
(β)=(B)である。
然るに、
(15)
(B)スニーカーを履いている子は、みんな女子です。
というのであれば、
(3)帽子をかぶっていて、しかも「スニーカーを履いている子ども」は一人もいない。
ということは、
(3)帽子をかぶっていて、しかも「女の子である子ども」は一人もいない。
ということに、「他ならない」。
然るに、
(16)
一々、「計算」はしないものの、
(3)帽子をかぶっていて、しかも「女の子である子ども」は一人もいない。
ということは、
(Ⅱ)帽子をかぶっている子はみんな男の子です。
(〃)∀x(帽子x→男子x)
ということに、「他ならない」。
従って、
(12)~(16)により、
(17)
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
に於いて、 (2)は(1)の「逆」であるが、「逆は必ずしも、〇(真)ではない」。
というだけでなく、
(1)男の子はみんな帽子をかぶっている。
(3)帽子をかぶっていて、しかも「スニーカーを履いている子ども」は一人もいない。
(3)は(1)の「逆」であるが、「逆は必ずしも、〇(真)ではない」。
従って、
(04)(05)(06)(17)により、
(18)
もう一度、確認すると、
(α)帽子をかぶっていない子どもは、みんな女の子です。
(β)スニーカーを履いている男の子は一人もいません。
(Γ)男子ならば、そのときに限って、女子ではない。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
という「日本語」は、それぞれ、
(α) ∀x(~帽子x→女子x)。
(β)~∃x(スニx& 男子x)。
(Γ) ∀x(男子x⇔~女子x)。
(1) ∀x(男子x→ 帽子x)。
(2)~∃x(帽子x& 女子x)。
(3)~∃x(帽子x& スニx)。
という「述語論理式」に「相当」し、それ故、
(α)帽子をかぶっていない子どもは、みんな女の子です。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
に於いて、
(α)と(1)は「対偶」であり、
(1)と(2)は「 逆 」であり、
(1)と(3)も「 逆 」であり、そのため、
(1)〇
(2)✕
(3)✕
である。
(01)(18)により、
(19)
問題 次の報告から確実に正しいと言えることには〇を、そうでないないものには✕を、左側の空欄に記入して下さい。
公園に子どもたちが集まっています。
    男の子も女の子もいます。
(α)帽子をかぶっていない子どもは、みんな女の子です。そして、
(β)スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
(AI vs. 教科書が読めない子供たち、新井紀子、2018年、182頁)。
正しいのは(1)のみです。
といふ「問題」は、「述語論理」によって、「解答」可能である。
然るに、
(20)
(述語)論理式にはこれまで述べたように、厳密な(形式的な)意味論が与えられるから、自然言語文も、翻訳を介して意味論に法っとった解釈が与えられ、したがって、間接的であるが、自然言語に意味論が与えられることになる(長尾真・淵一博、論理と意味、1983年、167頁)。
(21)
さて、統計的な手法が登場する以前、自然言語処理の技術を使う自動翻訳や質疑応答の分野では、研究者たちはAIに文法などの言葉のルールを覚えさせ、論理的、演繹的な手法で精度を上げようとしました。けれど、その手法は何度試みても失敗を繰り返しました(AI vs. 教科書が読めない子供たち、新井紀子、2018年、124頁)。
従って、
(19)(20)(21)により、
(22)
問題 次の報告から確実に正しいと言えることには〇を、そうでないないものには✕を、左側の空欄に記入して下さい。
公園に子どもたちが集まっています。
というような「問題」を、「生成AI」は、「(述語)論理式」を用いて、「解答」することは、出来ない。


(1337)「この問題の正解率は64.5%でした。」(Ⅱ)

2024-03-24 20:30:17 | 論理

(01)
問題 次の報告から確実に正しいと言えることには〇を、そうでないないものには✕を、左側の空欄に記入して下さい。
公園に子どもたちが集まっています。
    男の子も女の子もいます。
帽子をかぶっていない子どもは、みんな女の子です。そして、
スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
正しいのは(1)のみです。
(AI vs. 教科書が読めない子供たち、新井紀子、2018年、182頁)。
従って、
(01)により、
(02)
「教科書が読めない子供たち」によると、
(ⅰ)帽子をかぶっていないならば、女子である。従って、
(ⅱ)男子であるならば、帽子をかぶっている。
という『推論』は、「妥当」である。
然るに、
(03)
1   (1) ∀x(~帽子x→女子x)  A
 2  (2) ∀x(女子x→~男子x)  A
  3 (3) ~∀x(男子x→帽子x)  A
1   (4)    ~帽子a→女子a   1UE
 2  (5)    女子a→~男子a   2UE
  3 (6) ∃x~(男子x→帽子x)  3量化子の関係
   7(7)   ~(男子a→帽子a)  A
   7(8)  ~(~男子a∨帽子a)  7含意の定義
   7(9)    男子a&~帽子a   8ド・モルガンの法則
   7(ア)        ~帽子a   9&E
1  7(イ)         女子a   4アMPP
12 7(ウ)        ~男子a   5イMPP
12 7(エ)    男子a        9&E
12 7(オ)    男子a&~男子a   イウ&I
1  7(カ)~∀x(女子x→~男子x)  2オRAA
1 3 (キ)~∀x(女子x→~男子x)  37カEE
123 (ク)~∀x(女子x→~男子x)&
        ∀x(女子x→~男子x)  2キ&I
12  (ケ)~~∀x(男子x→帽子x)  3クRAA
12  (コ)  ∀x(男子x→帽子x)  ケDN
従って、
(03)により、
(04)
(ⅰ)∀x(~帽子x→女子x)。然るに、
(ⅱ)∀x(女子x→~男子x)。従って、
(ⅲ) ∀x(男子x→帽子x)。
という『推論』、すなはち、
(ⅰ)すべてのxについて(xが帽子をかぶっていないならば、xは女子である)。然るに、
(ⅱ)すべてのxについて(xが女子であるならば、xは男子ではない)。従って、
(ⅲ)すべてのxについて(xが男子であるならば、xは帽子をかぶっている)。
という『推論』、すなはち、
(ⅰ)帽子をかぶっていないならば、女子である。然るに、
(ⅱ)女子であるならば、男子ではない。従って、
(ⅲ)男子であるならば、帽子をかぶっている。
という『推論』は、「妥当」である。
従って、
(04)により、
(05)
「述語論理」からすれば、
(ⅰ)帽子をかぶっていないならば、女子である。然るに、
(ⅱ)女子であるならば、男子ではない。従って、
(ⅲ)男子であるならば、帽子をかぶっている。
という『推論』は、「妥当」であるが、
(ⅰ)帽子をかぶっていないならば、女子である。従って、
(ⅲ)男子であるならば、帽子をかぶっている。
という『推論』は、「妥当」ではない。
従って、
(02)(05)により、
(06)
「述語論理」からすれば、
「AI vs. 教科書が読めない子供たち、新井紀子、2018年」による、
(ⅰ)帽子をかぶっていないならば、女子である。従って、
(ⅱ)男子であるならば、帽子をかぶっている。
という『推論』は、
(ⅱ)女子であるならば、男子ではない
という「前提」が、「省略」されているため、「妥当」ではない
従って、
(06)により、
(07)
「AI」に対して、
「述語論理」による『推論』をさせる場合は、
「AI」に対して、
「人間の5歳児には常識である」所の、
(ⅱ)女子であるならば、男子ではない
という「常識」を、「予め、教えなければ、ならない」。
従って、
(07)により、
(08)
生成AI」が、
人間の5歳児なみに、賢くなる」ためには、
生成AI」は、
人間の5歳児なみの、常識を、獲得しなければ、ならない」。
然るに、
(09)
「人間の5歳児は、知らないことが多い」としても、
「人間の5歳児には、様々な、実体験が有り」、その一方で、
「人間の5歳児の知識としては、例えば、ウィキペディアから得たものは、ほとんど無い。」
従って、
(09)により、
(10)
生成AI」が、
人間の5歳児と同じように、賢くなること」は、「不可能」である。


(1326)「この問題の正解率は64.5%でした。」

2024-03-24 17:17:22 | 場合の数

(01)
問題 次の報告から確実に正しいと言えることには〇を、そうでないないものには✕を、左側の空欄に記入して下さい。
公園に子どもたちが集まっています。
     男の子も女の子もいます。
帽子をかぶっていない子どもは、みんな女の子です。そして、
スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
 ― 中略 ―
この問題の正解率は64.5%でした。入試で問われるスキルは何一つ問うていないのに、
国立Sクラスでは85%が正当した一方、私大B、Cクラスでは正当率が5割を切りました。
では、多くの高校生が憧れる私大Sクラスではどうだったか。国立Sクラスに比べて20ポイントも低い66.8%に留まりました。
どこの大学に入学できるかは、学習量でも知識でも運でもない、論理的な読解と推論の力ではないのか、6000枚の答案をみているうちに、私は確信するようになりました。
(AI vs. 教科書が読めない子供たち、新井紀子、2018年、182頁)。
然るに、
(01)により、
(02)
(ⅰ)帽子をかぶっていない子どもは、みんな女の子です。
(ⅱ)スニーカーを履いている男の子は一人もいません。
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
然るに、
(03)
男子={(一郎)、(次郎)、(三郎)}
女子={ 花子 、 桃子、 (梅子)}
に於いて、
帽子をかぶっている ={(一郎)、(次郎)、(三郎)、(梅子)}
帽子をかぶっていない={ 花子、  桃子}
とする。
従って、
(03)により、
(04)
(ⅰ)帽子をかぶっていない子どもは、みんな女の子(花子、桃子)です。
(1)男の子(一郎、次郎、三郎)はみんな帽子をかぶっている。
といふ「命題」は、「真(〇)」である。
然るに、
(03)により、
(05)
帽子をかぶっている={(一郎)、(次郎)、(三郎)、(梅子)}
であるため、
帽子をかぶっている≒{(梅子)}
であって、それ故、
(2)帽子をかぶっている女の子はいない。
(〃)梅子は女の子ではない。
といふ「命題」は、「偽(✕)」である。
然るに、
(01)により、
(06)
(ⅱ)スニーカーを履いている男の子は一人もいません。
といふことは、
帽子をかぶっている={(一郎)、(次郎)、(三郎)、(梅子)}
といふ「4人」の内の{(一郎)、(次郎)、(三郎)     }といふ「3人」は、「スニーカーを履いていない」。
といふことである。
然るに、
(07)
帽子をかぶっている={(一郎)、(次郎)、(三郎)、(梅子)}
といふ「4人」の内の{(一郎)、(次郎)、(三郎)     }といふ「3人」は、「スニーカーを履いていない」。
といふことは、
帽子をかぶっている≒{(梅子)}
に関しては、「スニーカーを履いているかも、知れない」。
といふことである。
然るに、
(03)(07)により、
(08)
帽子をかぶっている≒{(梅子)}
に関しては、「スニーカーを履いているかも、知れない」。
といふことは、
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
といふのではなく、
(3)帽子をかぶっていて、しかもスニーカーを履いている子ども(梅子)がいる。
かも知れない。
といふ、ことである。
従って、
(08)により、
(09)
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
といふ「命題」は、「偽(✕)」である。
従って、
(01)~(09)により、
(10)
(ⅰ)帽子をかぶっていない子どもは、みんな女の子です。
(ⅱ)スニーカーを履いている男の子は一人もいません。
といふ「命題」が「真(〇)」であるならば、
(1)男の子はみんな帽子をかぶっている。
(2)帽子をかぶっている女の子はいない。
(3)帽子をかぶっていて、しかもスニーカーを履いている子どもは一人もいない。
に於いて、
(1)だけが、「真(〇)」であるが、「新井紀子」先生の「解答」も、
(1)だけが、「真(〇)」である。
然るに、
(11)
この問題は、
(ⅰ)
1   (1)~∃x(女子x& 男子x)  A
 2  (2)    女子a& 男子a   A
 2  (3) ∃x(女子x& 男子x)  2EI
12  (4)~∃x(女子x& 男子x)&
        ∃x(女子x& 男子x)  13&I
1   (5)  ~(女子a& 男子a)  24RAA
  6 (6)    女子a        A
   7(7)         男子a   A
  67(8)    女子a& 男子a   67&I 
1 67(9)  ~(女子a& 男子a)&
          (女子a& 男子a)  58&I
1 6 (ア)        ~男子a   7RAA
1   (イ)    女子a→~男子a   6アCP
1   (ウ  ∀x(女子x→~男子x)  イUI
(ⅱ)
1   (1) ∀x(女子x→~男子x)  A
 2  (2) ∃x(女子x& 男子x)  A
1   (3)    女子a→~男子a   1UE
  3 (4)     女子a&男子a   A
  3 (5)     女子a       4&E
1 3 (6)        ~男子a   35MPP
  3 (7)         男子a   4&E
1 3 (8)     ~男a&男子a   67&I
  3 (9)~∀x(女子x→~男子x)  18RAA
 2  (ア)~∀x(女子x→~男子x)  239EE
12  (イ)~∀x(女子x→~男子x)&
        ∀x(女子x→~男子x)  1ア&I
1   (ウ)~∃x(女子x& 男子x)  2イRAA
という「計算」に拘っていると、「頭がぐちゃぐちゃになる」ものの、
男子={(一郎)、(次郎)、(三郎)}
女子={ 花子 、 桃子、 (梅子)}
という風に、「書いて」みると、「極めて、簡単に、答えが出る」。
従って、
(12)
生成AI君」に対しても、「このような解法」を、勧めたい。


(1325)AIは何も考えてはいない!!

2024-03-23 09:57:41 | 論理

(01)
「マイクロソフトのAI」に「質問(兎は象ですか?)」をしたところ、「AI」は「パニック」を起こしたのか??

という「回答」の「1回目」は、右のやうな「日本語申し訳ありません)」ではなく、「英語I apologize)」であった。
然るに、
(02)
さて、統計的な手法が登場する以前、自然言語処理の技術を使う自動翻訳や質疑応答の分野では、研究者たちはAI文法などの言葉のルールを憶えさせ論理的、演繹的な手法で精度を上げようとしました(AI vs. 教科書が読めない子供たち、新井紀子、2018年、124頁)。
然るに、
(03)
Prologの文は「述語論理」にならって節(Clause)と呼ぶことが多いのでここでも節と呼ぶことににします。一つの節は、一つの述語が、どういう場合に真になるかを記述しています。もっとも単純な例として、
 father(mary,henry).
という節は、fatherという述語がmary,henryという引数に対して成立するということを表しています(淵一博 監修、第五世代コンピューター入門、1987年、11頁)。
然るに、
(04)
第五世代コンピュータ(だいごせだいコンピュータ)計画とは、1982年から1992年にかけて日本の通商産業省(現経済産業省)所管の新世代コンピュータ技術開発機構(ICOT)が進めた国家プロジェクトで、いわゆる人工知能コンピュータの開発を目的に総額540億円の国家予算が投入された(ウィキペディア)。
従って、
(02)(03)(04)により、
(05)
「(統計的な手法が登場する以前の、)第五世代コンピュータ計画」の「時代」には、
1      (1) ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)} A
 2     (2) ∀x{兎x→∃z(耳zx&~鼻zx&長z)}         A
  3    (3) ∃x(象x&兎x)                      A
1      (4)    象a→∃y(鼻ya&長y)&∀z(~鼻za→~長z)  1UE
 2     (5)    兎a→∃z(耳za&~鼻za&長z)          2UE
   6   (6)    象a&兎a                       A
   6   (7)    象a                          6&E
   6   (8)       兎a                       6&E
1  6   (9)       ∃y(鼻ya&長y)&∀z(~鼻za→~長z)  47MPP
1  6   (ア)                  ∀z(~鼻za→~長z)  9&E
1  6   (イ)                     ~鼻ba→~長b   アUE
 2 6   (ウ)       ∃z(耳za&~鼻za&長z)          58MPP
    エ  (エ)          耳ba&~鼻ba&長b           A
    エ  (オ)              ~鼻ba              エ&E
    エ  (カ)                   長b           エ&E
1  6エ  (キ)                          ~長b   イオMPP
1  6エ  (ク)                   長b&~長b       カキ&I
12 6   (ケ)                   長b&~長b       ウエクEE
123    (コ)                   長b&~長b       36ケEE
12     (サ)~∃x(象x& 兎x)                     3コRAA
     シ (シ)  ~(象a→~兎a)                     A
     シ (ス) ~(~象a∨~兎a)                     シ含意の定義
     シ (セ)    象a& 兎a                      ス、ド・モルガンの法則
      シ (ソ) ∃x(象x& 兎x)                     セEI
12   シ (タ)~∃x(象x& 兎x)&∃x(象x& 兎x)          サソ&I
12     (チ) ~~(象a→~兎a)                     シタRAA
12     (ツ)   (象a→~兎a)                     チDN
      テ(テ)        兎a                      A
      テ(ト)      ~~兎a                      テDN
12    テ(ナ)   ~象a                          ツトMTT
12     (ニ)    兎a→~象a                      テナCP
12     (ヌ) ∀x(兎x→~象x)                     ニUI
といふ「述語計算」を用ひて、「コンピューター」に対して、
(ⅰ)象は鼻が長い。然るに、
(ⅱ)兎の耳は長いが、耳は鼻ではない。従って、
(ⅲ)兎は象ではない。
といふ「推論演繹)」をさせようとしてゐた。
然るに、
(05)により、
(06)
 2(2) ∀x{兎x→∃z(耳zx&~鼻zx&長z)} A
から、               「~鼻zx(耳は鼻でない)」を「除いた」場合は、
12(ヌ) ∀x(兎x→~象x) ニUI
12(〃) 兎は象ではない。   ニUI
といふ「結論」を得ることは、出来ない
従って、
(05)(06)により、
(07)
(ⅱ)兎の耳は鼻ではない
といふ「条件」が示されてはゐない
といふ「理由」により、
(ⅰ)象は鼻が長い。然るに、
(ⅱ)兎は耳が長い。従って、
(ⅲ)兎は象ではない。
といふ「推論演繹)」は、「述語論理」としては、「間違ひ」である。
然るに、
(08)
(ⅱ)兎の耳は鼻ではない
(〃)王様の耳はロバの耳である
(〃)パンの耳は食べられる
といふことは、「(一々、断らなくとも)、常識」である。
従って、
(08)~(08)により、
(09)
人間」にではなく
第五世代コンピュータ」に対して、次に、
(ⅰ)ロバは耳が長い。然るに、
(ⅱ)王様は耳が短い。従って、
(ⅲ)王様はロバではない。
といふ「推論演繹)」を行わせようとするならば、
(ⅱ)(童話の中では)王様の耳は長いこともあるが、
(〃)(童話の中でも)パンの耳は、王様の耳ではない。
といふこと、「その他」を、予め、「記述」をしておく「必要」が有る。
従って、
(02)(07)(08)(09)により、
(10)
述語論理」を用ひて、
第五世代コンピュータ」に対して、
(ⅰ)象は鼻が長い。然るに、
(ⅱ)兎は耳が長い。従って、
(ⅲ)兎は象ではない。
といふ「推論演繹)」を行はせようとすると、
文法などの言葉のルール」の他に、「大量の常識」を、
第五世代コンピュータ」に対して、「教へなければならない」。
然るに、
(11)
国語はどう考えても正攻法でなんとかできるとは思えません。そこで国語チームが試みたのは、センター国語試験で最も配点の大きい傍線部分の問題に対し、文字の重複などごく表面的なことから選択肢を選ぶという「荒業」でした。単純に言うと、傍線のついている部分とその前の段落の文を取って来て、「『あ』という文字が何回、『山』という文字が何回」と同じ文字の数を数えて、選択肢のほうも同様に数えて、いちばん重複の多い選択肢を選ぶという方法を採用したのです。文の意味どころか、単語の意味調べません(AI vs. 教科書が読めない子供たち、 新井紀子、2018年、124頁)。
然るに、
(12)
「グーグルのAI」に「質問(兎は象ですか?)」をしたところ、
然るに、
(13)
論理にはこれまで述べたように、厳密な(形式的な)意味が与えられるから、自然言語文も、翻訳を介して意味に法っとった解釈が与えられ、したがって、間接的であるが、自然言語に意味論が与えられることになる(長尾真・淵一博、論理意味、1983年、167頁)。
然るに、
(14)
他方、アメリカの企業は日本の失敗を学びました。論理的な手法で自動翻訳などのAIを開発することに見切りをつけ、統計的手法に梶を切り、グーグル翻訳やワトソンなどで成果を上げたのです(AI vs. 教科書が読めない子供たち、新井紀子、2018年、90頁)。
然るに、
(15)
さて、統計的な手法が登場する以前、自然言語処理の技術を使う自動翻訳や質疑応答の分野では、研究者たちはAIに文法などの言葉のルールを覚えさせ、論理的、演繹的な手法で精度を上げようとしました。けれど、その手法は何度試みても失敗を繰り返しました(AI vs. 教科書が読めない子供たち、新井紀子、2018年、124頁)。
従って、
(02)(12)~(15)により、
(16)
①「論理」と「意味」による「AI技術」と、
②「統計的な手法」による、「AI技術」とが有って、
では、「難しかった」、または、「成功しなかった所の、
(ⅰ)象は鼻が長い。然るに、
(ⅱ)兎は耳が長い。従って、
(ⅲ)兎は象ではない。
といふ「推論」は、
では、「容易」である。
といふ、ことになる。
然るに、
(17)
言ふ迄も無く、「我々(人間)」は、「論理意味」だけを用ひて、「推論演繹)」をする。
従って、
(18)
(ⅰ)象は鼻が長い。然るに、
(ⅱ)兎は耳が長い。従って、
(ⅲ)兎は象ではない。
といふ「推論演繹」する際に、「我々(人間)」は、「統計的な手法」など、「用ひない」。
従って、
(19)
AI」は、「我々(人間)のやうに、考へはしない」し、と言ふよりも、固より、 「AI」は、「何も考えてはいない!!
然るに、
(20)
最近は、その努力を怠っているものの、私は、以前から、曾祖父のやうに、「漢文か書ける」ようになりたかったものの、その一方で、「AIが発達すれば、人間が書かなくとも、AIが漢文を書くようになる」のではと、思ってゐた。
然るに、
(21)
「漢文」には、「ネイティブ・ライター」はゐない上に、「(「東大合格を目指すAI」にとって)さらに過酷な状況にあるのは古文や漢文です(AI vs. 教科書が読めない子供たち、新井紀子、2018年、84頁)」といふこともあって、「もう一度、漢文の勉強を、趣味にしよう」と、思ってゐるが、このところ、「私も、いくらか、忙しい」。