公務員試験知能、教員採用試験数学解説

ある予備校講師が暇な時間に綴る小さなブログ

国家一般職(大卒)の数的推理 2

2021-11-11 10:11:00 | 国家一般職(大卒)
2021年実施の第2問は、整数分野からの出題でした。                    0又は1桁の正の整数a、bを用いて次のように表される4桁の数がある。この数が7と11のいずれでも割り切れるとき、aとbの和はいくらか。選択肢省略。                7と11のいずれでも割り切れるのだから、この数は7と11の公倍数、つまり77の倍数ですね。ポイントは、1の位の数です。                 小学校で、九九を習いました。なかなか覚えられず、泣きそうになりましたね。本当に泣き出す子もいたりして、今なら先生は優しく励ましてくれるのでしょうが、我々昭和30年、40年代生まれの子供たちは、何で覚えられないの?もっとしっかり勉強しなさい!と怒られるばかり。 特に7の段が覚えにくく、7×6=54?7×8=42?何かぐちやぐちゃぐちゃや〜、。ということになってました。この僕は。
それはさておき、九九の1、3、7、9の段には、ある特徴があるのですが、分かりますか?1の位の数がバラバラになっているのです。例えば、7の段では、
なので、掛け算や割り算の計算パズルでは、この1、3、7、9がよくキーナンバーとなります。   さて、ごちゃごちゃ言わずに解説していきましょう。                 2□□4は77を何倍かした数です。大雑把に、30倍か40倍くらいした数です。(77×30=2310、77×40=3080)もしかしたら、20何倍かもしれません。              77の1のくらいの「7」に何を掛けたら2□□4の1の位の「4」になるか?「2」しかありませんね。だから、多分32倍でしょう。      実際にやってみると、77×22=1694で、2000にもいかない。77×32=2464でピッタリ。77×42=3234で3000台になる。     よって、a=4、b=6。aとbの和は10です。
震える身体これが武者震い限界を越えて存在価値みせろ OK?


最新の画像もっと見る

コメントを投稿