今日もArt & Science

写真付きで日記や趣味を勝手気ままに書くつもり!
徒然草や方丈記の様に!
あるいは寺田寅彦の様に!

「日本植物誌」の魅力Ⅱ 代表的な植物絵

2012-07-23 08:02:43 | まち歩き

  好評に付き、シーボルト&ツッカリニ著「日本植物誌」の魅力そのⅡとして著者が選別した植物種を掲載する。魅力の効果を上げるために、photogallery で修正した。

1 ビワ

Photo_2

2 キリ

Photo_3
 五三のキリなどでお馴染みのキリである。

3 ウメ

Photo_4

4 フジ

Photo_5

5 ヤマブキ

Photo_7

6 レンギョウ

Photo_8

 如何でしょう? 日本植物誌の絵画の魅力を少しでも感じていただければ有難いのですが・・・

各種アイデアのヴィジュアル化を考えている皆様!

研究成果をもっとアピールしませんか?研究内容も含め、ポスター、3DCG、モックアップなど、?さまざまな媒体を用いた研究内容のヴィジュアルを提供します。????Webサイトやラボのレイアウトデザイン等々、ヴィジュアルに関するお悩みについてもお気軽にご相談ください??。
http://www.aandsgraphics.com/#!home/mainPage


シーボルト&ツッカリニ著「日本植物誌」の魅力

2012-07-21 08:58:39 | まち歩き

 医師であり博物学者シーボルトはドイツ人であるが、鎖国時代に長崎にオランダ商館員の一員として日本に渡来し、オランダ人と偽って出島に滞在、医療と博物学的研究に従事した。シーボルトは、オランダに帰還してから植物学者のツッカリニと共著で『日本植物誌』(http://edb.kulib.kyoto-u.ac.jp/exhibit/b01/b01cont.html)を著したが、その際にアジサイ属 14 種を新種記載している。このアジサイの絵等がボタニカルアートの領域を超え、日本に新しい絵画の道を開いた。

Photo

図0 アジサイ。 単にアジサイと名づけられた代表的な品種の絵画。豪華で品がある。三次元的な奥行きも控えめである。

 図1はシーボルトがお抱え絵師川原慶賀に描かせた植物画の内、14種を選んだ。はオランダで改良された交配種(セイヨウアジサイ)とは原種(ガクアジサイ)である。その中で花序全体が装飾花になる園芸品種のアジサイを Hydrangea otaksa Siebold et Zuccarini と命名している。ここでオペラなどでお馴染みの「お滝さん(otakusa)」の登場となる。

図1 シーボルトがお抱え絵師川原慶賀に描かせた植物画の内、魅力的な8種を選んだ。はオランダで改良された交配種(セイヨウアジサイ)とは原種(ガクアジサイ)である。

 オオアジサイ

Photo_2

2 ガクアジサイ

Photo_3

3 クサアジサイ

Photo_4

4 タマアジサイ

Photo_5

5 ツルアジサイ

Photo_6

6 ベニガク

Photo_9

7 ヤブデマリ

Photo_10

8 ヤマアジサイ

Photo_7

9 オオデマリ

Photo_12

10  コアジサイ

Photo_13

11 アマチャ

Photo_14

12  ヤブウツギ

B01l0256

13 ノリウツギ

Photo_15

 梅雨時のリフレッシュにゆっくり鑑賞してください。現代でも十分通用する絵画です!

シーボルト、ツッカリニ共著、『日本植物誌』(http://edb.kulib.kyoto-u.ac.jp/exhibit/b01/b01cont.html)の本文はオランダ語ですが、絵画部分を独立に見ることが出来ます。ビワを初め、素晴らしい絵が楽しめます。

各種アイデアのヴィジュアル化を考えている皆様!

 研究成果をもっとアピールしませんか?研究内容も含め、ポスター、3DCG、モックアップなど、?さまざまな媒体を用いた研究内容のヴィジュアルを提供します。????Webサイトやラボのレイアウトデザイン等々、ヴィジュアルに関するお悩みについてもお気軽にご相談ください??。
http://www.aandsgraphics.com/#!home/mainPage


山鉾巡業は終わった!

2012-07-18 09:23:41 | アート・文化

 

Photo_6

 

図1 先頭の長刀鉾の稚児が真刀を用いて注連縄を切り、巡業が開始された。何時もこの情景を見ると身体に電流が走る!理由は分からない!

 

 

山鉾巡業は終わった!長刀鉾を先頭に巡業を前にして、注連縄切りが例年のように行われた。10歳に満たない稚児が真剣で注連縄を切る様は演出効果満点!祇園祭の伝統を感じる!中京の地域から八坂神社の境界線に張られた注連縄はそれ自身意味を持ち、神域に入るセレモニーとして、注連縄切りが行われる。勿論、黒子の介添えがなければならないがそれは些細なことで、注連縄を切るというセレモニーが大事なのである。

 

つつがなく33基の山鉾巡業が終了した!


電池とスーパーオキサイド

2012-07-13 07:00:48 | ESR

電池とスーパーオキサイド等はなじみの深い関係にある。O-のESRが始めて検出されたのも電池であった。また、最近の研究で多くの燃料電池で電子のキャリアーは2-であることが次第に分かってきた。個々に、最近話題になってきた細野先生(東工大)の成果を紹介し、スーパーオキサイドの重要性を眺めて見たい。

12cao7al2o3

図1 12CaO7Al2O3の結晶構造

(a)

O2esr

(b)

O2

図2 12CaO7Al23の空気極で生成した酸化物イオン(O2-およびO-)のESR(a)およびラマンスペクトル(b)

2 固体酸化物形燃料電池(Solid Oxide Fuel Cell SOFCは固体電解質形燃料電池とも呼ばれ、動作温度はMCFC以上の800-1,000℃を必要とするので高耐熱性の材料が必要となる。また、起動・停止時間も長い。電解質として酸化物イオンの透過性が高い安定化ジルコニアランタンガリウムペロブスカイト酸化物などのイオン伝導性セラミックスを用いており、空気極で生成した酸化物イオン(O2-)が電解質を透過し、燃料極で水素と反応することにより電気エネルギーを発生させている。そのため、水素だけではなく天然ガス石炭ガスなども燃料として用いることが可能である。活性化電圧降下が少ないので発電効率は高く、すでに56.1%LHVを達成している例もある。家庭用・業務用の1kW-10kW級としても開発されている。 内部改質方式であり、改質器は不要で触媒も特に必要ない。電極材としては導電性セラミックスを用いる。火力発電所の代替などの用途が期待されている。日本ガイシ株式会社は2009611日に独自構造のSOFCを開発し、世界最高レベルの63%の発電効率(LHV)90%の高い燃料利用率を達成したと発表した。

3 12CaO/7Al

 

Topic12_fig2

図3 12CaO・7Al23化合物電気伝導機構

 東工大細野によって発見された、12CaO・7Al23化合物はO-イオンラジカルおよび/またはO-イオンラジカルを1020cm-3以上の高濃度に含む(単位胞あたり2個)。この化合物は、酸化触媒、抗菌剤、イオン伝導体、特に、固体電解質燃料電池用電極などの用途に使用される夢の化合物である(1,2)。空気極で生成した酸化物イオン(O2-およびO-)のESRおよびラマンスペクトルを図1に示す。O2-の信号を観ながら、電池の高性能化が測れる。電気的な性質からすると、この世の物質は伝導体と絶縁体に大別される。半導体のように双方の性質をもつものも存在していることから、その境界が判然としているわけではないが、セメント素材のような物質を絶縁体だと考えるのは常識だ。ところが、東京工業大学フロンティア創造共同研究センターの細野秀雄教授、大阪府立大学の久保田佳基准教授、理化学研究所の高田昌樹主任研究員らの研究グループは、そんなセメント素材を伝導体に変えることに成功し、その転移メカニズムをSPring-8の放射光を用いて解明した。この成果により、ごく普通に存在する物質を素材にした新伝導体開発も夢ではなくなった

4 絶縁体のセメント素材はほんとうに伝導体に変わるのか?

地殻の99%は、酸素、ケイ素、アルミニウム、鉄、カルシウム、ナトリウム、カリウム、マグネシウムの8元素から構成されている。なお、それらの元素のうち酸素以外の7元素は、単独で存在するのではなく、酸素と結合した酸化物として存在している。ほとんどが軽金属酸化物であるそれら酸化物類は、ガラス、セメント、陶磁器などの原料として日常的に広く用いられているが、電気を通さないことは常識となっている。

だが、東京工業大学の細野秀雄教授らの研究グループは、絶縁体として知られる諸々の軽金属酸化物の結晶構造をnm(ナノメートル=10-9 m)レベルの精度で明らかにしてきた。そして、解明されたそれらのナノ構造を巧みに利用することにより、本来は絶縁体である軽金属酸化物類を半導体や金属(伝導体)に変える研究を進めてきた。

「ずっと以前から軽金属酸化物には注目していました。ガラスやセラミックスを長年研究しているとわかるんです、それには何かあるはずだなって……。それで、軽金属酸化物と電子とを組み合わせてみる物性研究のアイデアが生まれたんです」と細野教授は語る。

カルシウムと酸素の化合物である石灰(CaO)と、アルミニウムと酸素の化合物である酸化アルミニウム(Al2O3)は、電気を流さない代表的な絶縁体として教科書などにも紹介されている。2003年、細野教授らは、それら2つの酸化物からできている12CaO・7Al2O3(以下C12A7と表記)というセメントの構成物質のひとつを半導体に変えることに成功した。

だが、その物質(C12A7)を金属状態にまで変えることはできないままであった。シリコンなどの半導体は、電子をドープ(注入)していくと、伝導性がどんどんと高まっていき、ドープされた電子の濃度がある一定の値を超えると金属状態に変わることがよく知られている。そのため、さらに一歩進んで、C12A7のような典型的な絶縁体を金属状態に変えることができるかどうかを研究することは、当然、興味深いテーマのひとつとなっていたが、これまでその結論は得られないままになっていた。

5 ついに絶縁体C12A7が金属状態に大変貌を遂げる!

C12A7はナノサイズのケージ(カゴ)がお互いに結びついて結晶をつくっており(図1)、その中に酸素イオン(O2-)が入っている。研究グループは、この酸素イオンが一定の自由度を保ちながらケージ内に入っており、温度が700°C以上になるとケージの連なる結晶中をよく動き回ることに着目した。そして、この動きまわる酸素イオンだけをつかまえて安定した結合体をつくることはできるが、C12A7のケージ自体とは反応しない金属チタンと一緒にガラス管の中に封入し、1100°Cで加熱してみた。C12A7と反応する元素だとケージが壊れてしまうのでチタンは最適な元素である。すると、ケージ内の酸素イオンをほぼ100%チタンのもつ電子で置き換えることが可能になり、その結果、C12A7を絶縁体から半導体、さらには金属状態にまで自由に変えることに成功した(図2)。なお、C12A7が金属化したことは、次のような2点を確認することで立証された。

第一点は、温度低下に伴い電気抵抗が減少することである。半導体の場合は温度が下がると逆に抵抗は増大する。

第二点は、磁性をもつ不純物を少量加えると、電気抵抗が温度とともに単調には変化せず、ある温度で最低値をとる現象が観察されたことである。これは「近藤効果」と呼ばれ、磁性不純物と伝導を担う電子との相互作用に共通な特徴だ。

金属化したこのC12A7は、金属マンガンと同程度、黒鉛の2倍以上もの高い電気伝導率をもつ。シリコンなどの半導体が金属に変わるときは電子の数は増えるが、電子1個あたりの移動度(動きやすさ)は減少する。だが、一連の研究を通じ、C12A7の場合には逆に、金属化すると半導体の状態よりも電子移動度が数十倍も大きくなることが明らかになった(図3下左)。

そこで、その原因を調べるために、SPring-8の粉末結晶構造解析ビームラインBL02B2の粉末X線回折装置と、理化学研究所の高田昌樹主任研究員らが開発したMEM/Rietveld法とを用いてC12A7の構造解析が行われた。MEM/Rietveld法は、構造未詳の物質の大まかな構造モデルから原子の詳細な配列を決定する画期的な構造解析法。電子密度イメージングと粉末回折パターンフィッティングとを組み合わせた手法である。

細野教授は、その結果について、「ナノサイズのケージ中に酸素イオンが入っている絶縁体の状態では、ケージの形が歪んでいます。でも、酸素イオンを電子で置き換え、酸素イオン数を減少させていくと、次第にその歪みがなくなっていき、ある濃度にまで電子が増えると、いっきに全部のケージが歪みのない綺麗な形になるんです。すると電子の動きが急に自由になり、そのために半導体が金属に変わることがわかったんですよ(図3下右)。SPring-8の高輝度X線ビームを用いて測定した高精度の回折データのおかげで、絶縁体状態から金属状態への構造変化の詳細なメカニズムの解明に至ったわけです。この物質のユニークな点は、金属カリウムと同じくらい電子を放出しやすいのに化学的に安定なことです。この性質を利用した電子機器類の開発は遠くないと思いますよ」と述べている。

情報機器類の液晶ディスプレイ生産には、希少金属インジウムのような透明金属が不可欠だ。だが、この研究が進めば、ごく日常的な元素(細野教授はユビキタス元素と呼んでいる)を使ってそれら希少金属の代替が可能になるかもしれない。C12A7などには、厚さ100 nm程度の薄膜にすると可視光線の70%が透過可能になるという特性もある。これら一連の研究成果は2007年4月、米国化学会発行の科学誌『Nano Letters』に掲載された。

なお、細野教授らのグループは、このC12A7の金属化成功からわずか3ヶ月後には同じC12A7の超伝導体化にも成功し、さらにそれから間もなく、新たな高温超電導体の発見に至っている。

6 文献<o:p></o:p>

1)特開200232182)特開2009161728

<o:p></o:p>

<問合せ先>: ◎ラジカルのことならキーコム。出張測定可!

キーコム(株)

〒170-0005 東京都豊島区南大塚3-40-2

KEYCOM Corp. 3-40-2 Minamiotsuka,Toshima-ku Tokyo 170-0005 Japan

TEL:+81-3-5950-3101, FAX:+81-3-5950-3380

Home Page: http//www.keycom.co.jp/

E-mail: info@keycom.co.jp


もう、祇園祭が近い!

2012-07-09 16:49:04 | アート・文化

葵祭りの編集が終わったと思ったらもう祇園祭が近い!

葵祭りは上賀茂神社、下賀茂神社、が主催する公家文化の祭りに対して、祇園祭は疫病阻止を主な願いとする庶民の祭りである。

Photo_2

図1 真刀でしめ縄を切る長刀鉾の稚児!一瞬、電流が走る。これで、山鉾の巡業が始まるのでる。 いつもこの一瞬を楽しみにしている。