60歳からの視覚能力

文字を読んで眼が疲れない、記憶力、平衡感覚の維持のために

注意の分割と集中力

2008-11-27 23:14:27 | 視角能力

 縦の4本の線は白と黒のヒモがより合わせてあるように見えますが、このより合わせたヒモは斜めに見えます。
 ところがこれはすべて垂直線です。
 黒と白の四角形は垂直に並んでいて、黒の四角形を見た場合、垂直に並んでいる同じ列の三つの四角形は同じであることが見て取れます。
 したがって、黒い四角形の上を通っている斜めの白い線は、垂直線上にあることがわかります。

 同じように、縦に並んでいる三つの白い四角形は、垂直に並んでいて、その上を通っている斜めの黒い線は垂直に並んでいるということがわかりす。
 このように一つ一つの部分を見た結果からは、斜めの白い線も黒い線も垂直に並んでいることが、理屈の上ではわかります。
 理屈の上では、白い線も黒い線も垂直に並んでいるのですが、実際に目で見ると、どうしても斜めに並んでいるように見えます。
 
 ここで目をすこし寄り目にして、立体視をして4本の線が五本の線に見えるようにします。
 そうすると5列の四角形のうち中側の3列が浮き出て見え、同時に5本の線はすべて垂直に見えるようになります。
 このときより合わさって見えていた真ん中の白と黒の線は、はなれて四角形の面からやや下方に突き出ているように見えます。
 また両隣の場合は上方に突き出ているように見えます。
垂直に並んでいるように見えはするのですが、立体的に見えるようになるのです。
 (ただし、寄り目にして立体的に見えるようになった場合でも、5列でなく6列に見えた場合は四角形の面から白と黒の線が突き出ているように見えるのですが、並び方は垂直でなく、斜めに見えてしまいます。)

 立体視をしなくても、たとえばどの列でも垂直に並んでいる3つの黒い正方形に同時に注意を向けて見ていると、白い線が垂直に並んでいるように見え、それにつれて黒い線も垂直に並んで見えるようになり、より合わさったねじれひもは垂直に見えるようになります。
 このとき、黒い四角形のみに注意を向けることが大事で、線のほうに注意を向けてしまうと斜めに見えてしまいます。
 注意を分割できる能力と同時に集中力が必要なのです。
 同じように、縦に並んでいる3つの白い四角形だけに注意を向けて見ても、やはり白と黒の線は垂直に並んで見えるようになります。
 ねじれひもの錯視というのは強烈な錯視で、どうしても斜めに見えてしまうような感じがしますが、見方がコントロールでき、集中力があれば実態を見極めることができるのです。。


片側から見るクセ

2008-11-25 22:58:20 | 視角能力

 図Aでは1番と3番が凹んで見え、2番と4番が凸型に見えると思います。
 1番と3番は上が陰になっているように見えますが、2番と4番は下が陰になっているように見えます。
 体験的には光が上から来る場合が多いので、2番と4番が凸型に見えるのです。
 こういう例を見ると、上の部分が明るくて下の部分が暗ければ凸型に見えるだろうと一般化してしまいがちになります。

 ところがB図を見た場合はどうでしょうか。
 上が明るく、下が暗いほうが凸型に見え、上が暗く下が明るいほうは凹方に見えるというのであれば、1番と3番が凹んで見え、2番と4番が凸型に見えるはずです。
 実際には、人によっては1番が凸型に見えたり、3番が凸型に見えたりします。
 右から見るクセのある人は1番が凸型に見え、逆に左から見るクセのある人は3番が凸型に見えます。
 また、2番と4番が両方とも凸型に見えたとしても、どちらか一方のほうが他方よりもより浮き出て見え、より凸型に見えたりします。
 つまり、右から見るクセのある人は4番のほうが3番よりも浮き出て見え、左から見るクセのある人は2番のほうが浮き出て見えるのです。

 このような違い出てくるのは、A図の場合は上の部分と下の部分が狭いので、注意を引きにくく、左右の横の部分は長いので注意を引きやすいためだと考えられます。
 同じように1番と3番が両方とも凹んで見えたとしても、左から見るクセのある人には、1番のほうが3番より凹んで見えます。
 つまり、右側から見るクセのある人は、3番と4番の凹凸がハッキリと対照的に見え、1番と4番の差はハッキリと見えません。
 そこで、意識して左から見るようにすれば、1番が凹んで、2番がハッキリ浮き出て差がハッキリ見えるようになります。

 こうした経験をしてから、A図のほうを見ると単純に3番と4番が浮き出て見えるとしていたのが、左右どちらから見るかによって2番の萌芽より浮き出て見えたり、4番のほうがより浮き出て見えたりします。
 そうして、1番と2番との凹凸の差のほうが、3番と4番の凹凸の差がハッキリ見えるようであれば、左側から見るクセがあり、3番と4番の差のほうがくっきり見えれば、右のほうから見るクセがあるということがわかります。
 左から見るクセがある人は、利き目が左であるということかどうかはわかりませんが、どちら側から見る癖があるかがわかれば、別の側からも見る訓練をして、視覚のコントロール力を向上させることができます。


全体的に見る能力

2008-11-11 23:12:56 | 視角能力

 図Aと図Cを見比べると、水平の軸線はAのほうが短く見えます。
 よく紹介されるミュラー.リヤー錯視と呼ばれるもので、実際には二つの軸線は同じ長さです。
 同じ長さなのだということがわかっていても、見比べてみるとやはりA図の軸線のほうが短く見えます。
 ほんとうに同じ長さなのかどうかは、物差しをあてがってみればわかるのですが、目で見ていては納得できないかもしれません。
 
 B図はAとCをあわせた図形ですが、見方を変えると、A図とCzuha B図の中に埋め込まれています。
 B図を何気なく見ているときは、このなかにA図やC図画埋め込まれているということに気がつかないかもしれませんが、注意をしてみれば気がつくはずです。
 とくにA図のほうは中心に目を向ければ目に入るので気がつきやすくなっています。
 C図のほうは左右両側に注意を向けなければならず、その際に余分の線も見えてしまうので、気がつきにくくなっています。
 この場合aという6個の記号に注意を向けて見ると、A図とともにB図に埋め込まれたA図と同じ図形が見えます。
 また外側のbという6個の記号に注意を向けて見ると、C図とともに、B図に埋め込まれたC図と同じ図形が見えます。
 
 そうすると記号aをみたときは、B図の横の軸線はA図の軸線と同じ長さに見えたわけであり、記号bを見たときは、B図の軸線はC図の軸線と同じ長さに見えたわけです。
 したがってA図の軸線と、C図の軸線は同じ長さであることを、気がつかないうちに実感していることになります。
 それでは意識的にA図の軸線と、B図の軸線を比べてみればどうかというと、記号aに注意を向けたまま二つの軸線を見比べると、二本の軸線が同じ長さだと実感できます。
 同じように記号bに注意を向けたまま、B図の軸線とC図の軸線とを見比べれば、二本の軸線は同じ長さだと実感できます。
 つまり、意識的に見比べているのにA図の軸線とC図の軸線が同じ長さだということが確かめられいるのです。
 
 B図のなかに埋め込まれているC図を見るには、記号bに注意を向け、aを無視することができればよいのですが、これが結構難しい課題です。
 bは左右に離れているので、両サイドに注意を同時に向けるのは困難で、また内側のaはどうしても視野の中に入ってきますから、無視するのが困難です。
 したがってある程度の視野の広さと、離れたところに注意を向ける能力が必要です。
 視野を広げて全体的な見方のなかで図形を比較する能力が要求されるのです。
 B図を見るとき、4つのbに注意を向けてみて、C図と同じ図形を見ることができたら、こんどはそのままaにも注意を向ければ、図Aが埋め込まれているのも見えてきますから、そうすると3本の軸線が見えて、それらが同じ長さに見えるようになります。

 図Aと図Cを直接比べるときも、軸線のみに注意を向けずに、4つの記号bと4つの記号aに注意を向けて全体的な見方をすれば、二つの軸線は同じ長さに見えてきます。
 幼児と高齢者がこの図の錯視量が多いというのは視野が狭く、全体的な見方が難しいという理由によるのではないかと考えられるのです。


視線のコントロール能力

2008-11-08 23:24:25 | 視角能力

 図Aでは、左側の図形の中に、右側の六角形と同じ形が埋め込まれているのですが、どのように埋め込まれているかを発見する問題です。
 埋め込まれている場所は狭いので、簡単に発見できそうなのですが、輪郭線がハッキリ独立しているわけではないので、すぐにはわかりません。
 輪郭線が他の線の中にまぎれて埋没しているので、どの部分が輪郭線になっているのか、自然に見ただけではわからないのです。
 
 左側の図形では、平行四辺形に対して、斜めに切る線が7本ありますが、真ん中の一番長い線から左へ2番目の線と、右へ二番目の線で平行四辺形を切ると、右の六角形と同じ形になります。
 このように答えがわかっても、実際にA図を見るとほかの線が妨害刺激となって、六角形を図の中から分別して見ることはかなり困難です。
 真ん中の斜めの線と、そこから左右2番目2本の斜めの線、この3本の線と平行四辺形との6つの交点が六角形をつくっています。
 したがってこの6個の交点を意識して見れば6角形が見えてくるのですが、紛らわしい点がそばにあるので見にくくなっています。
 6つの交点をひとつづつ、順にゆっくり見ていけばよいのですが、視線をコントロールする力が弱いと、ついほかのところに視線が逸れて形がわからなくなってしまいます。
 また視線を順に移動したとき、前の点は周辺視野の中に入っていて、見えはするのですが忘れてしまう場合があります。
 ゆっくり、繰り返して交点を順に見ていけば、視線がコントロールできるようになり、、記憶も固定されて、六角形が見えるようになります。

 B図では、真ん中の横線は水平線なのですが、右下がりに傾いて見えます。
 この場合、横線の上にある黒い四角形は、すべて同じ大きさの四角形なので、四角形の下辺に接している横線は水平です。
 そのようにアタマでは理解していても、実際に図を見るとやはり横線は右肩下がりに見えます。
 そこで上下の接している二つの黒い四角形を左から順に一秒ずつ見ていきます。
 同じ大きさの図形を見ていくので、上下の真ん中の線は水平に見えるようになります。
 一組ずつきちんと視線を向けて見ていけば、横線が水平に見えるのですが、視線をふらつかせてしまうと、横線が斜めに見えてしまったりします。
 つまり、きちんと視線をコントロールして見ていっていけたかどうかは、真ん中の横線が水平に見えたかどうかで判定できるのです。

 この場合は図の真ん中、つまり上の黒い四角の三番目と四番目の間の白い部分に視線を向け、意識を集中してみていると、真ん中の横線は水平に見えるようになります。
 集中力が弱く、つい別の部分に視線が動いたりすると、横線は傾いて見えてしまいますから、視線を真ん中に集中できたかどうかは、横線が水平に見えるかどうかで判定できます。
 また一番左の四角形の組と、一番右側の四角形の組とを同時に注意を向けて見ると横線は水平線に見えます。
 このように錯視図形は視線のコントロール能力を上げる練習に使えると同時に、コントロール能力を判定する物差しにもなります。


視線のコントロール

2008-11-06 23:36:06 | 視角能力

 図Aでは、縦の4本の線は垂直線なのですが、ななめに見えます。
 交差している短い斜めの線が妨害刺激となっているためで、この斜めの線がなければもちろん縦の線は垂直なのですから、垂直に見えます。
 したがって、この斜めの線から切り離して、縦の線にのみ注意を向けて見ることができれば、縦の線は垂直に見えるはずです。
 ところが、縦の線を見ようとして視線を向けると、同時に斜めの線も目に入るので、縦の線にのみ注意を向けるのは、なかなか難しいものです。

 ここで図の上部中央にある黒い丸に視線を向けてじっと見つめます。
 そうすると図のほかの部分は周辺視野で見ることになり、細かい部分はハッキリとは見えません。
 しかし縦の線はサイズが大きいため、周辺視野で見ても輪郭が捉えられ、垂直線であることが見て取れます。
 斜めの小さな線は、見えてはいるものの細部がハッキリ見えないため、干渉度が減っているのです。
 上の黒い丸に視線を向けたのは、ひとつの場所に注意を集中させ、他の部分を周辺視野で見ることが目的なので、ここでなければならないということはなく、下の黒丸でも結果は同じです。
 要は視線を固定し、一点を集中してみるということで、集中できず視線が動いてしまうと縦の線は斜めに見えてしまいます。

 一点に注意を集中させた場合は、他の場所がぼやけて見えてしまうので、縦の線が垂直に見えるといっても、不満が残るかもしれません。
 そこで今度は、上下の二つの黒丸を同時に見るようにします。
 そうすると一点を集中視した場合と比べ、斜めの線もハッキリ見えますが、縦の線は垂直に見えるようになります。
 二点を同時に見るようにすると、焦点が画面の向こうにあるようになるので、図は焦点があっていないので、ややぼやけて見えます。
 焦点を画面上にあわせず、遠くを見るような目で見るというやり方です。

 B図の場合はA図を斜めにしたもので、円形の枠の中に入っています。
 この場合もA図のときのようにすれば長い線が平行に見えるようになるのですが、この場合は真ん中の黒丸に視線を向けて集中視すれば長い線は平行に見えるようになります。
 この場合は円形の中を直接見るのではなく周りの灰色の部分全体に注意を向けてみるようにすると、長いほうの線は平行に見えるようになります。
 注意を一点に集中させて見るか、注意を広く分散させて見るか、いずれかにすればさくししなくなるということです。
 何気なく見れば、目は自動的に動いて脳による視覚情報の処理も自動的に行われるのですが、目を意識的にコントロールすれば、錯覚しなくなるという例もあるのです。
 

 


錯視が減少してハッキリ見える

2008-11-04 23:44:45 | 視角能力

 図はフレーザーの渦巻き錯視と呼ばれているものです。
 白と黒のヒモをより合わせたものが渦巻状に見えますが、実際は同心円となっています。
 渦巻状に見えるというのは錯覚なのですが、同心円であるということは、指でねじれヒモをなぞっていくと、元の場所に戻ることで確かめられます。
 目でなぞっていってもよいのですが、途中で内側の円にスリップしてしまったりするので、指でなぞるのが確実です。
 指でなぞってみて、同心円であることが確かめられても、、目で見るとやはりねじれヒモは渦を巻いているように見えます。
 それでは、どうしても目で見た場合は、渦巻きに見えてしまうのかというと必ずしもそうではありません。

 図には外から二番目のねじれひもの内側に、白い小さな輪を書き加えてあります。
 この白い輪をひとつずつ順にゆっくりと見ていきます。
 この白い輪は外側から二番目のねじれひもの輪と、三番目の輪との間にしかないので目で順に追っていってもスリップするということはありません。
 その結果この小さな輪を順に目で追っていっても、途中でスリップすることなく元の位置に戻ることができます。
 指を使わなくても、目で見ても外側から二番目のねじれひもが渦巻きでなく輪になっていることが確かめられたのです。
 しかしそれでもまだ、ねじれひも自体を見ると渦巻状に見えます。
 つまり、白い小さな輪を見ていくことで、間接的に理屈の上でねじれひもが渦巻状ではないということを確かめただけで、実際にねじれひもを見るときは、渦巻状に見えてしまっているのです。

 それでは、こんどは小さな白い輪だけを見ていくのではなく、その外側にあるにじれ品もの白いほうのヒモを同時に見ていくことにします。
 ひとつの白い輪にひとつの白いヒモの部分が対応していますから、同時に順に見ていくことができます。
 その結果、ねじれひもを順に見ていって、一周して元に戻ったことになります。
 これを数回繰り返した後は、白い小さな輪でなく、ねじれひもだけを目で追っていってもスリップすることはなくなります。
 こうしてねじれひもだけに注意を向けて、何周かすると、ねじれひも全体を見ても渦巻きでなく、円に見えるようになります。
 じっさいに目でなぞってみて、円形であるということを確かめたので、円全体を見てもスリップしにくくなっているのです。

 外側から二番目のねじれひもが円形に見えるようになったら、今度はその内側の三番目のねじれひもを同じように見てみます。
 この場合もねじれひもの、白いほうを順に見ていくのですが、、外側のヒモを見ていった経験があるので、やりやすくなっています。
 これも何周かすると、このヒモ全体をみたとき、渦巻きでなく円形に見えるようになります。
 
 こうしてねじれひもが渦巻状でなく、円形に見えるようになってきてから、この図形全体をみたとき、図全体がくっきりと見えるようになっていることに気がつくはずです。
 最初に図をみたときは渦巻状に見えるため、図の部分部分があいまいに見えるため、ハッキリしない部分が多いのですが、ねじれひもを目で注意深く追っていったために、図の部分部分がハッキリ見えるようになってきているのです(外側から三番目の次は四番目、次は五番目と順に内側の円について目でなぞることはできますが、五番目以降は図自体があいまいなので無理になぞると、目が疲れるのでやめたほうがよいでしょう)。
 
 


視覚の集中力

2008-08-20 22:49:05 | 視角能力

 A図で4本の横線はすべて水平線なのですが傾いて見えます。
 斜めの線が交差しているためですが、これも水平線に意識を集中して見ると平行に見えるようになります。
 横線に意識を集中して、斜めの線からの影響を取り除いて見ることができ
れば、本来の水平線に見えるのです。
 水平線に意識を集中して見る方法は、水平線の左右両端に同時に注意を向けてみることです。
 たとえば真ん中の二本の横線の左右両端に注意を向けて見ると、二本の横線は水平に見えるようになります。

 慣れないとどうしても斜めの線が意識の中に入り込んで、横線に意識が集中しにくいかもしれません。
 そこでB図のように横線を太くしてみます。
 B図でも普通に見ると横線は少し傾いて見えますが、横線に注視を集中して見るのはA図の場合より楽です。
 A図のときと同じように真ん中の二本の横線の両端を同時に見るようにすると、二本の横線は水平に見え、その他の二本の横線も水平に見えます。
 B図のほうが楽に横線に注意を集中して見ることが出来るのは、線が太くなっているためで、簡単な理由です。
 
 横線に意識を集中できれば、錯視がなくなり水平に見えるとするならば、横線を太くしなくても、色を変えてみるという考えも出てきます。
 C図は横線の色を赤く変えてみたものです。
 この場合も普通に見れば横線は傾いて見えますが、赤線に意識を集中して見れば横線は水平に見えるようになります。
 色が変っているため横線に意識を集中しやすいので、A図の場合より楽に横線が水平に見えるようになっています。
 こうしてやや楽な条件で横線に意識を集中して見る訓練をしたあと、A図に戻って横線に意識を集中して見ると、最初のときより横線が楽に水平に見えるようになります。
 横線に知識を集中する能力が一時的に高まったのです。

 横線に注意を集中しやすければ、横線が水平に見やすくなるということであれば、逆に横線に意識を集中しにくくすれば、横延はどうしても傾いて見えてしまうということになります。
 D図は斜めの線のほうを太くしているのですが、水平線のほうに意識を集中しようとしても、斜めの線が太く強いため非常に困難です。
 それだけでなく、横線に注意を向けて見ると横線は動いて見えるでしょう。
 横線に注意を向けて見ると水平に見えるようになりかかるのですが、斜めの線の干渉が強く傾いて見えるようになるため、ゆれて見えるようになるのです。
 この場合さらに意識を横線に集中して見続ければ、線のゆれが消え横線が水平に見えるようになります。

 水平な横線が傾いて見えるのは、斜めの線が妨害刺激となっているためですが、年をとってくると妨害刺激に弱くなるため、意識を集中して水平に見ることが難しくなってきます。
 D図の場合はかなり難しいですが、B、Cを経てA図で横線が水平に見えるくらいの視覚の集中力は欲しいものです。
 


視覚能力と錯視

2008-08-18 22:12:11 | 視角能力

 図Aでは上の図の軸線のほうが下の図の軸線より短く見えますが、実際は二つの横線は同じ長さです。
 よく知られているミュラー.リヤーの錯視図というものですが、これは誰でも同じように長さの差を感じるかというとそうではありません。
 子供や老齢者は成人に比べると長さの差を大きく感じるそうですし、同じ人でも見ているうちに差を少なく感じるようになるといいます。
 つまり経験とか視覚能力が関係してくるようなのです。
 
 ところでA図のそれぞれの矢羽の部分を半分切り取って、B図のような形にすると、やはりA図のときと同じように上の図の軸線のほうが短く見えるかというとそうではありません。
 この場合は上の軸線のほうが短く見えないというどころか、なんと上の線のほうがむしろ長く見えます。
 A図では軸線の先端が矢羽と接しているために、軸線の長さを比べようとしても線端があいまいになっています。
 A図では上の軸線の線端は実際よりも内側にあるように見え、下の図の軸線は実際よりも外側にあるように見えます。
 つまり軸線を矢羽から切り離して見ることが出来ないので、上の図の軸線のほうが下の図の軸線より短く見えるのです。
 そこでB図のように矢羽根の半分を取り去ってみると、軸線の線端がはっきり見えるので、上の軸線のほうが短く見えるという錯視効果は消滅するのです。

 したがってもしA図を見るときも、B図のイメージで見れば軸線を矢羽から切り離した見かたが出来ますから錯視効果はなくなります。
 そうはいってもA図を見るときは矢羽根が見えているので、B図のように半分を切り離したイメージを見るということは難しいものです。
 このように図のなかから特定の部分を抜き出したイメージを作り上げるのは、こどもは視覚能力が未発達なので難しく、高齢者は視覚能力が衰えた結果不得意になっています。
 その結果、子供や高齢者は成人に比べこの錯視の度合いが大きいという傾向が見られるのです。

 B図は矢羽根の半分を取っているので、なにかごまかされたような感じがするかもしれませんが、C図のように矢羽根の一部をとっても、同じような結果が得られます。
 C図では矢羽根の部分は残っていますが、片側が短くなっているために軸線の先端を見極めやすくなっています。
 このため上の軸線と下の軸線とが同じ長さであるというふうに見えやすくなっています。
 B→C→Aというふうに順番に目を馴らしていけば、A図のなかにB図のイメージを見ることが出来、錯視効果をなくすことが出来ます。
 つまり、A図を見て上の軸線と下の軸線の長さが同じように見えてくれば、図形を妨害要素から切り離して見る能力が増したということになるのです。
 


見方と見え方

2007-06-09 22:43:53 | 視角能力

 左の図は立命館大学の北岡明佳教授が作成した錯視図です。
 白と黒の縞模様の枠がゆがんで見えます。 
 外側の縞模様の枠は左下と右上に引き伸ばされているように見え、内側の枠は左上と右下に引き伸ばされているように見えます。
 実際は両方とも正方形で、背景になっているグレーの部分は、真ん中が正方形、縞模様の間の部分、外側の部分ともに正方形なのですが、ゆがんで見えます。
 これらはすべて正方形だと知らされても、どうしてもゆがんで見えてしまうのではないでしょうか。

 ゆがんで見えてしまうという人は、実は正常な視力の持ち主です。
 この図を目を細めて見てみるとどうでしょうか。
 目を細めて少し図がぼやけて見えると、縞模様の枠のゆがみがなくなり、グレーの部分もきれいに正方形に見えます。
 この結果から考えると、ゆがんで見えた原因は白、黒、灰色の部分の境界がはっきりと見えたためだといえそうです。
 目を細めて見ると境界部分がはっきりしないで、全体の姿が見える、つまり部分にこだわらず全体像が見えるのです。
 視力が弱いほうが、正常な視力で見るより全体が見えるということになります。

 ところで右の図をパッと見てください。
 右の図は左の図のグレーの部分を赤にしたものですが、赤の部分が目を引くので何気なくパッと見たときは、赤の部分はゆがんでいないで正方形に見えます。
 白黒の縞模様に注意を向けて見始めると、縞模様の枠も赤い部分もゆがんで見えてくるのですが、赤い部分だけに注意を集中して見るとゆがみは消えます。
 バックが赤いほうが単色の部分(赤)に注意を集中しやすくなり、他の部分(縞模様)と切り離してみることができるのです。

 次にまた左の図に戻って、今度は目を見開きグレーの部分に注意を集中してみるとどうでしょうか。
 特にグレーの部分の一番上の部分と一番下の部分が同時に見えるように注意を向けて見るとグレーの部分がすべて正方形に見えてきます。
 単色のグレーの部分が縞模様の部分と切り離されて、まとまり持った形として見えてくるようになるとゆがみが消えて見えるようになるのです。
 グレーの部分をまとまりとして妨害部分から切り離して見る統合力によって、見え方が違ってくるのです。
 薄目でぼんやりと見たとき、目を見開いて注意を集中してみたときが全体像が見え、普通に見たときが部分的な見方に流されて錯視が生ずるというのですから面白いものです。


同じ面でとらえる

2007-03-06 23:45:25 | 視角能力

 図Aの四つの点を結ぶと長方形になるのですが、ゆがんだ四辺形になるように見えます。
 これは点を見るとき、小さな円と一体のものとして見てしまうためです。
 点だけに注目して見れば四つの点は長方形をつくることがわかるのですが、小さな円が眼に入るのでこれに引きずられてゆがんで見えてしまうのです。
 
 B図はA図と同じなのですが、小さな円を灰色にしてあります。
 こうすると小さな円は大きな円にあけられた穴のように見えます。
 あるいは大きな円の上に小さな円がのせられているように見えます。
 いずれにしても大きな円は円盤のように、一つの平面として見えるようになります。
 そうすると四つの点は、この大きな円に対する位置関係が表面化するため、長方形を作るように見えてきます。
 大きな円が面としてとらえられれば四つの点はグループ化してみることが容易になり、錯覚が消えるのです。

 Aの場合は小さな円も、大きな円も線として表現されていたのにたいし、B図の場合は着色によって面が表現されたために、四つの点は安定した見え方をしたのです。
 Aの場合でも大きな円を一つの平面としてとらえ小さな円を別の平面として見ることが出来れば、四つの点が長方形を形作るように見えます。
 しかしそのためには大きな円から小さな円を切り離して見る集中力が必要です。
 
 C図を見て三ヶ月の乳児もこの中に円形を見ることが出来るといいますが、c図の中に円の輪郭線を見ていると推測するのは強引です。
 乳児の視力というのは生後三ヶ月ぐらいでは0.1以下ですからぼんやりとした輪郭しかわかりません。
 C図の中に輪郭線をイメージするような集中力を三ヶ月の乳児が持っているとは考えられません。
 大雑把にぼんやりとした形をとらえることが出来ても、存在しない輪郭線をイメージするまでの視覚能力はありません。
 黒い円形は塗りつぶされているので、面として感じられC図と一致する部分を感じると言うことなのだと思われます。