(01)
(ⅰ)
① 不有祝鮀之佞、而有宋朝之美、難乎、免於今之世矣=
① 不〔有(祝鮀之佞)〕、而有(宋朝之美)、難乎、免(於今之世)矣⇒
① 〔(祝鮀之佞)有〕不、而(宋朝之美)有、難乎、(於今之世)免矣=
① 〔(祝鮀の佞)有ら〕ずして、而も(宋朝の美)有らば、難いかな、(今に世に)免るること=
① 〔(祝鮀のやうな弁舌が)有る〕のではなく、而も(宋朝のやうな美貌が)有るだけならば、難しいことだよ、(今の時世を)無事に送ることは。
(ⅱ)
② 不有祝鮀之佞、而有宋朝之美、難乎、免於今之世矣=
② 不〔有(祝鮀之佞)、而有(宋朝之美)〕、難乎、免(於今之世)矣⇒
② 〔(祝鮀之佞)有、而(宋朝之美)有〕不、難乎、(於今之世)免矣=
② 〔(祝鮀の佞)有りて、而も(宋朝の美)有ら〕ずんば、難いかな、(今の世矣)免るること=
② 〔(祝鮀のやうな弁舌が)有って、而も(宋朝のやうな美貌が)有る〕といふ、ことではないならば、難しいことだよ、(今の時世を)無事に送ることは。
然るに、
(02)
実はどちらも意味が通じるのである。
① のほうは、古注といって、伝統的な解釈であるが、
② のほうは、新注といって、朱熹(朱子)の解釈なのである。
(二畳庵主人、漢文法基礎、1984年10月、325・326頁)
従って、
(01)(02)により、
(03)
P=祝鮀のやうな弁舌が有る。
Q=宋朝のやうな美貌が有る。
R=今の時世を無事に送ることは、難しい。
とするならば、
① ~P&Q →R
② ~(P&Q)→R
といふ「論理式」は、
① 不〔有(祝鮀之佞)〕、而有(宋朝之美)、難乎、免(於今之世)矣。
② 不〔有(祝鮀之佞)、而有(宋朝之美)〕、難乎、免(於今之世)矣。
といふ「漢文」に「等しい」。
然るに、
(04)
(ⅲ)
1 (1) P→ Q A
2 (2) P&~Q A
2 (3) P 2&E
12 (4) Q 13MPP
2 (5) ~Q 2&E
12 (6) Q&~Q 45&I
1 (7) ~(P&~Q) 26RAA
8 (8) ~(~P∨ Q) A
9 (9) ~P A
9 (ア) ~P∨ Q 9∨I
89 (イ) ~(~P∨ Q)&
(~P∨ Q) 8ア&I
8 (ウ) ~~P 9イRAA
8 (エ) P ウDN
オ(オ) Q A
オ(カ) ~P∨ Q オ&I
8 オ(キ) ~(~P∨ Q)&
(~P∨ Q) 8カ&I
8 (ク) ~Q オキRAA
8 (ケ) P&~Q エク&I
1 8 (コ) ~(P&~Q)&
(P&~Q) 7ケ&I
1 (サ)~~(~P∨ Q) 8コRAA
1 (シ) ~P∨ Q サDN
(ⅳ)
1 (1) ~P∨ Q A
2 (2) P&~Q A
3 (3) ~P A
2 (4) P 2&E
23 (5) ~P&P 34&I
3 (6) ~(P&~Q) 25RAA
7 (7) Q A
2 (8) ~Q 2&E
2 7 (9) Q&~Q 78&I
7 (ア) ~(P&~Q) 29RAA
1 (イ) ~(P&~Q) 1367ア∨E
ウ (ウ) P A
エ(エ) ~Q A
ウエ(オ) P&~Q ウエ&I
1 ウエ(カ) ~(P&~Q)&
(P&~Q) イオ&I
1 ウ (キ) ~~Q エカRAA
1 ウ (ク) Q キDN
1 (ケ) P→ Q ウクCP
従って、
(04)により、
(05)
③ P→Q
④ ~P∨Q
に於いて、
③=④ である(含意の定義)。
然るに、
(06)
(ⅴ)
1 (1) ~(~P&Q) A
2 (2) ~(P∨~Q) A
3 (3) P A
3 (4) P∨~Q 3∨I
23 (5) ~(P∨~Q)&
(P∨~Q) 24&I
2 (6) ~P 35RAA
7(7) ~Q A
7(8) P∨~Q 7∨I
2 7(9) ~(P∨~Q)&
(P∨~Q) 28&I
2 (ア) ~~Q 7RAA
2 (イ) Q アDN
2 (ウ) ~P&Q 6イ&I
12 (エ) ~(~P&Q)&
(~P&Q) 1ウ&I
1 (オ)~~(P∨~Q) 2エRAA
1 (カ) P∨~Q オDN
(ⅵ)
1 (1) P∨~Q A
2 (2) ~P& Q A
3 (3) P A
2 (4) ~P 2&E
23 (5) P&~P 34&I
3 (6)~(~P& Q) 25RAA
7(7) ~Q A
2 (8) Q 2&E
2 7(9) ~Q&Q 78&I
7(ア)~(~P& Q) 29RAA
1 (イ)~(~P& Q) 1367アRAA
従って、
(06)により、
(07)
⑤ ~(~P&Q)
⑥ P∨~Q
に於いて、
⑤=⑥ である(ド・モルガンの法則)。
従って、
(03)(05)(07)により、
(08)
「含意の定義」と「ド・モルガンの法則」と「二重否定律」により、
① ~P&Q →R
② ~(P&Q)→R
といふ「論理式」は、
① ~(~P&Q)∨R
② ~~(P&Q)∨R
といふ「論理式」に、更には、
① (P∨~Q)∨R
② (P& Q)∨R
といふ「論理式」に、「等しい」。
然るに、
(09)
①(P∨~Q)∨R
②(P& Q)∨R
に於いて、
① R が「必ず、真である」場合。
② R が「必ず、真である」場合。
とは、それぞれ、
①(P∨~Q)が「偽」である場合。
②(P& Q)が「偽」である場合。
である。
然るに、
(10)
①(P∨~Q)が「偽」である場合。
とは、
①(~P&Q)≡(祝鮀之佞が無くて、宋朝之美が有る)場合。
といふ「1通り」である。
である。
(11)
②(P& Q)が「偽」である場合。
とは、
②(~P& Q)≡(祝鮀之佞が無くて、宋朝之美が有る)場合。
②( P&~Q)≡(祝鮀之佞が有って、宋朝之美が無い)場合。
②(~P&~Q)≡(祝鮀之佞が無くて、宋朝之美も無い)場合。
といふ「3通り」である。
従って、
(03)(08)~(11)により、
(12)
① ~P&Q →R
② ~(P&Q)→R
に於いて、すなはち、
①(P∨~Q)∨R
②(P& Q)∨R
に於いて、
① の場合は、
①(祝鮀之佞が無くて、宋朝之美が有る)ならば、そのときに限って、今の時世を無事に送ることは、難しい。
といふことになり、
② の場合は、
②(祝鮀之佞が有って、宋朝之美が有る)ならば、そのときに限って、今の時世を無事に送ることは、難しくはない(のかも知れない)。
といふことになる。
(13)
② ~(P&Q)→R
といふ「論理式」からは、「分かり難い」が、これと「同値」である所の、
② (P&Q)∨R
といふ「論理式」からは、
②(祝鮀之佞が有って、宋朝之美が有る)ならば、その場合は、
② 今の時世を無事に送ることは、難しくとも、難しくなくとも、「どちらでも良い」。
といふことが、「明確」である。
従って、
(01)(13)により、
(14)
② 不有祝鮀之佞、而有宋朝之美、難乎、免於今之世矣=
② 不〔有(祝鮀之佞)、而有(宋朝之美)〕、難乎、免(於今之世)矣⇒
② 〔(祝鮀之佞)有、而(宋朝之美)有〕不、難乎、(於今之世)免矣=
② 〔(祝鮀の佞)有りて、而も(宋朝の美)有ら〕ずんば、難いかな、(今の世矣)免るること=
② 〔(祝鮀のやうな弁舌が)有って、而も(宋朝のやうな美貌が)有る〕といふ、ことではないならば、難しいことだよ、(今の時世を)無事に送ることは。
といふ「漢文訓読」からは、
② 〔(祝鮀の佞)が有って、しかも(宋朝の美)有る〕ならば、容易なことだよ、(今の時世を)無事に送ることは。
といふことには、ならない。