ブログ
ランダム
【PR】プロ直伝・dポイントをザクザクためる術
記事を書く
検索
ウェブ
このブログ内で
ログイン
ブログ開設
トップ
dポイント
メール
ニュース
辞書
教えてgoo
ブログ
住宅・不動産
サービス一覧
閉じる
goo blog サービス終了のお知らせ
TakaPの数学日記
数学を教えていて感じたことや日常の感想などを記録しました。
ネットから
2025年05月08日 03時10分44秒
|
数学
ネットを見ていたら
こんな問題に遭遇
解くのに時間がかかった
数学の解く力も落ちたと感じた
YouTubeで解き方のヒントを見つけた
補助線は合っていたのだが、、、
ランキングに参加中。クリックして応援お願いします!
人気ブログランキング
にほんブログ村
コメント
統計数学
2025年03月31日 01時01分29秒
|
数学
高校数学の教科書で勉強中
数学Iも統計数学で終わる
相関係数のところ
これだ
電卓で計算していたが
表計算ソフトを使えばいいことに気づいた
iPadの表計算ソフトのNumbersなら簡単
味を占めた
ランキングに参加中。クリックして応援お願いします!
人気ブログランキング
にほんブログ村
コメント
試験問題
2025年01月28日 01時31分22秒
|
数学
3年前に苦労して復元した試験問題
孫息子くんや孫娘ちゃんが解いたのを写真で送ってもらって
数式ソフトで復元した
pdfファイルに保存しておいて良かった
今回三つ年下の孫娘ちゃんの試験勉強用に出来そう
学習教室にも提供するつもり
ランキングに参加中。クリックして応援お願いします!
人気ブログランキング
にほんブログ村
コメント
速さについて
2025年01月15日 00時29分23秒
|
数学
新年会で、孫たちとの分かる際に中学生の孫娘ちゃんと話した
塾では、もう連立方程式などを解いているという
方程式は解けても、応用問題が苦手だという
二学期の数学の成績は5を取れたのに苦手とは
と思ったので、「速さ」について、LINEで送った
以下LINEのメッセージ
速さの問題。あとでプリント作るけど、とりあえず、、、
基本は3つの式
1 (道のり)÷(時間)=(速さ) 速さはこの場合時速
この式が基本中の基本
覚え方
12kmの道のりを歩く時、3時間で歩いた時の速さは?
12÷3=4 時速4km
この式を反対からたどるとかけ算が出来て
4×3=12
ということは、
時速4kmの速さで3時間歩いたときの道のりが12kmだから
公式の2
(速さ)×(時間)=(道のり)
という公式が出来る
また4×3=12の式から
12÷4=3になるので、
12kmの道のりを1時間あたり4km歩くと3時間かかるということから
公式3
(道のり)÷(速さ)=(かかった時間)
となる
良くある「み、は、じ」は使わない
この例に立ち戻って、xを使った式を作れば良い
孫娘ちゃんからの返事
おーーー✨
ありがとう!!!文字式とか方程式とか頑張るね💪
そしてお正月もありがとう!
ということで、じいちゃん嬉しい
ランキングに参加中。クリックして応援お願いします!
人気ブログランキング
にほんブログ村
コメント
Facebookの記事から
2024年12月01日 02時27分30秒
|
数学
Facebookの記事
a×a=8
なら、a=√8 だから、簡単
でも、、、
これ、小学校の算数の知識で解いてくれ、という問題
さて
つづく
ランキングに参加中。クリックして応援お願いします!
人気ブログランキング
にほんブログ村
コメント
因数分解の問題
2024年10月07日 05時44分21秒
|
数学
SNSに投稿された因数分解の問題
まずは因数定理を試す
定数項が1だから、xに1や−1を代入してみると
この式の値は0にならない
ということはx
の値に整数でないものを代入しないと0にならない
ということで
直感で
が因数になるのではないかと思い
を
で割ってみた
老脳の悲しさ、計算ミスをしてしまい
割り切ることができず
ネットで解答を調べた
思ったとおりだった
ちょっと悔しい
ランキングに参加中。クリックして応援お願いします!
人気ブログランキング
にほんブログ村
コメント
SNSから
2024年09月28日 01時54分23秒
|
数学
Facebookで見つけた問題
角は直角
周の長さを求める
LINEで盛り上がった
解答は後日
ランキングに参加中。クリックして応援お願いします!
人気ブログランキング
にほんブログ村
コメント
高校生からの質問
2024年09月09日 17時38分30秒
|
数学
知り合いの先生の息子さんからLINEで質問が来た
この問題
解説
以下質問
今送った問題は答え自体は求まったのですが、解説を見ると単位(㎡)がつけられています。
ですが、僕の考えでは、訊かれてるのは最大値なので、
単位をつける必要は無いと考えたのですが、先生はどうお考えでしょうか?
長文になってしまい、すみません。
私の答え
問題を良く読むと、xにはxmと単位がついているのに、Sには単位がついていません。
ですからSの最大値は1250(平方m)と、単位をつけるのではないでしょうか。
問題に不備があり、Sに単位をつけて出題するべきだと思います。
解答のS=も良く考えるとおかしいと思います。
なぜかというと、S=の式の左辺Sは面積を表わすので単位の平方mがつきますが、右辺は
=x(100-2x) で、単位がありません。
問題の図のSに単位「平方m」をつけるべきです。
さて、分かってもらえたか?
ランキングに参加中。クリックして応援お願いします!
人気ブログランキング
にほんブログ村
コメント
ガロア理論
2024年09月03日 15時10分25秒
|
数学
ガロア理論の復習というか
再挑戦を始めた
確か、教員になってしばらくして見つけた本だ
この本やガロア理論については後日
つづく
ランキングに参加中。クリックして応援お願いします!
人気ブログランキング
にほんブログ村
コメント
数学の質問
2024年08月30日 10時00分55秒
|
数学
質問した高校生と同じ問題集
LINEで連絡して取り寄せていたもの
質問のページがあった晴れ
解答の解説を読めば分かるはずなので、
どこが分からないか、聞いたところ
食塩量の表し方からわからないです。
つまり、食塩水の濃度についての基本を忘れていたようだ
割合や%の基本を復習しましょう。と提案
--------------------------------------------
濃度(%)の公式がありますね。
この式の両辺に(水の量+食塩の量)をかけると
濃度(%)×(水の量+食塩の量)=(食塩の量)×100
となります。
--------------------------------------------
ここで気がついた。
解説で(水の量+食塩の量)とは(食塩水の量)
であることに触れていない。常識としていたのだろう。
ここは大抵の生徒がつまずくところだ。
濃度%は全体に対する割合を表わすのだが
全体の重さを(水の量+食塩の量)として表わすより
(食塩水の量)とした方が分かりやすいと思うのだ。
現役の頃、こちらの方針で教えると生徒たちは納得してくれた。
問題集の解説のように
割合%を (食塩の量)/(水の量+食塩の量)×100
と表わすよりは
(食塩の量)/(食塩水の量)×100
とした方が
割合=(比べられる量)/(もとにする量)
との関係がよく分かる。
--------------------------------------------------------
この両辺を100で割ると
濃度(%)×(水の量+食塩の量)/100=(食塩の量)
となります。
ところで(水の量+食塩の量)とは(食塩水の量)つまり重さです
書き換えると
濃度(%)×(食塩水の量)/100=(食塩の量)
両辺を入れ替えて
(食塩の量)=濃度(%)×(食塩水の量)/100
右辺を書き換えて
(食塩の量)=(食塩水の量)×濃度(%)/100
これが食塩の量を求める公式になります。
---------------------------------------------------------
この問題で不等式を作るにあたって
食塩の重さを出す式が分からなかったのではないかと思った
(食塩の量)=(食塩水の量)×濃度(%)/100
以下解説
----------------------------------------------------
ここで、濃度(%)/100 は
食塩水全体の重さのうちの食塩のおもさの割合です。
例えば200グラムの食塩水があったとします。
この食塩水の濃度%が5%ならば
300グラムの5%が食塩の重さですね。
食塩の重さは200×5/100=10グラムとなります。
割合や%の基本は復習出来たでしょうか?
食塩の量を求める公式が分かれば、後は簡単です。
蛇足ですが、%とは、(割合)×100のこと
(割合)=(比べられる量)/(もとにする量) ①
濃度(%)を割合に直すには
濃度(%)/100
です
濃度(%)/100とは
食塩水の量全体に対する食塩の量の割合です
食塩の量は比べられる量ですから
①の式から
(比べられる量)=(もとにする量)×(割合)
すなわち
(食塩の量)=(食塩水の量)×濃度(%)/100
これが食塩の量を求める公式になります。
---------------------------------------------------
高校生には少しくどかったが、復習をした結果分かってくれた
ランキングに参加中。クリックして応援お願いします!
人気ブログランキング
にほんブログ村
コメント
記事一覧
|
画像一覧
|
フォロワー一覧
|
フォトチャンネル一覧
«
前ページ
goo blog
お知らせ
【11/18】goo blogサービス終了のお知らせ
【PR】プロ直伝・dポイントをザクザクためる術
【PR】安い&大量の「訳あり商品」がヤバい!
【PR】ドコモのサブスク【GOLF me!】初月無料
【大皿ポテトはどちらで食べる?】「手づかみ」or「箸」
プロフィール
フォロー中
フォローする
フォローする
自己紹介
元都内の公立中学校の数学教師。数学を教えて38年。完全退職して早10年以上が経つ。趣味はパソコン,音楽鑑賞,楽器(クラリネットを吹く),カラオケ,銭湯,健康ランド,温泉めぐり,将棋、お囃子,旅行。
ログイン
編集画面にログイン
ブログの新規登録
goo blog
おすすめ
おすすめブログ
【大皿ポテトはどちらで食べる?】「手づかみ」or「箸」
@goo_blog
お客さまのご利用端末からの情報の外部送信について
カレンダー
2025年5月
日
月
火
水
木
金
土
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
前月
次月
最新記事
畑のイチゴ
墨田へ出稽古 続き
墨田へ出稽古
ネットから
午前中に畑
学習教室の帰り
カインズ
畑の後
タケノコ
畑へ
>> もっと見る
カテゴリー
Weblog
(122)
日記
(3712)
数学
(1012)
コンピューター
(633)
温泉・銭湯
(88)
旅行
(329)
音楽・カラオケ
(347)
TeX関連
(42)
英語
(58)
お囃子
(282)
将棋
(383)
物語
(19)
最新コメント
トライボケミカル/
極限の勉強 級数1
なんくるないさ/
極限の勉強 級数1
CCSCモデルファン/
極限の勉強 級数1
プライムスクエア/
極限の勉強 級数1
とラボシステム/
極限の勉強 級数1
電炉製鉄エンジニア/
極限の勉強 級数1
宇宙航空工学関係/
極限の勉強 級数1
グラファイトテクノロジー関係/
極限の勉強 級数1
文藝春秋・渡邉/
ジャニー喜多川さん
柳田由紀子/
ジャニー喜多川さん
バックナンバー
2025年05月
2025年04月
2025年03月
2025年02月
2025年01月
2024年12月
2024年11月
2024年10月
2024年09月
2024年08月
2024年07月
2024年06月
2024年05月
2024年04月
2024年03月
2024年02月
2024年01月
2023年12月
2023年11月
2023年10月
2023年09月
2023年08月
2023年07月
2023年06月
2023年05月
2023年04月
2023年03月
2023年02月
2023年01月
2022年12月
2022年11月
2022年10月
2022年09月
2022年08月
2022年07月
2022年06月
2022年05月
2022年04月
2022年03月
2022年02月
2022年01月
2021年12月
2021年11月
2021年10月
2021年09月
2021年08月
2021年07月
2021年06月
2021年05月
2021年04月
2021年03月
2021年02月
2021年01月
2020年12月
2020年11月
2020年10月
2020年09月
2020年08月
2020年07月
2020年06月
2020年05月
2020年04月
2020年03月
2020年02月
2020年01月
2019年12月
2019年11月
2019年10月
2019年09月
2019年08月
2019年07月
2019年06月
2019年05月
2019年04月
2019年03月
2019年02月
2019年01月
2018年12月
2018年11月
2018年10月
2018年09月
2018年08月
2018年07月
2018年06月
2018年05月
2018年04月
2018年03月
2018年02月
2018年01月
2017年12月
2017年11月
2017年10月
2017年09月
2017年08月
2017年07月
2017年06月
2017年05月
2017年04月
2017年03月
2017年02月
2017年01月
2016年12月
2016年11月
2016年10月
2016年09月
2016年08月
2016年07月
2016年06月
2016年05月
2016年04月
2016年03月
2016年02月
2016年01月
2015年12月
2015年11月
2015年10月
2015年09月
2015年08月
2015年07月
2015年06月
2015年05月
2015年04月
2015年03月
2015年02月
2015年01月
2014年12月
2014年11月
2014年10月
2014年09月
2014年08月
2014年07月
2014年06月
2014年05月
2014年04月
2014年03月
2014年02月
2014年01月
2013年12月
2013年11月
2013年10月
2013年09月
2013年08月
2013年07月
2013年06月
2013年05月
2013年04月
2013年03月
2013年02月
2013年01月
2012年12月
2012年11月
2012年10月
2012年09月
2012年08月
2012年07月
2012年06月
2012年05月
2012年04月
2012年03月
2012年02月
2012年01月
2011年12月
2011年11月
2011年10月
2011年09月
2011年08月
2011年07月
2011年06月
2011年05月
2011年04月
2011年03月
2011年02月
2011年01月
2010年12月
2010年11月
2010年10月
2010年09月
2010年08月
2010年07月
2010年06月
2010年05月
2010年04月
2010年03月
2010年02月
2010年01月
2009年12月
2009年11月
2009年10月
2009年09月
2009年08月
2009年07月
2009年06月
2009年05月
2009年04月
2009年03月
2009年02月
2009年01月
2008年12月
2008年11月
2008年10月
2008年09月
2008年08月
2008年07月
2008年06月
2008年05月
2008年04月
2008年03月
2008年02月
2008年01月
2007年12月
2007年11月
2007年10月
2007年09月
2007年08月
2007年07月
2007年06月
2007年05月
2007年04月
2007年03月
2007年02月
2007年01月
2006年12月
2006年11月
2006年10月
2006年09月
2006年08月
2006年07月
2006年06月
2006年05月
2006年04月
2006年03月
2006年02月
ブックマーク
goo
最初はgoo
TakaPの数学日記