===== 中3 =====
(分配法則)
a(b + c) = ab + ac
(a + b)c = ac + bc
(多項式の公式)
X = c + d とおくと
(a + b)(c + d) = (a + b)X = aX + bX = a(c + d) + b(c + d) = ac + ad + bc + bd
よって、
(a + b)(c + d) = ac + ad + bc + bd ・・・①
①の公式を使用すると
(x + a)(x + b) = x2 + bx + ax + ab = x2 + (b + a)x + ab = x2 + (a + b)x + ab
よって、
(x + a)(x + b) = x2 + (a + b)x + ab ・・・②
②の公式を使用すると
(x + a)2 = (x + a)(x + a) = x2 + (a + a)x + a2 = x2 + 2ax + a2
よって
(x + a)2 = x2 + 2ax + a2 ・・・③
③の公式を使用すると a を -a とおく
(x - a)2 = (x + (-a))2 = x2 + 2(-a)x + (-a)2 = x2 - 2ax + a2
よって
(x - a)2 = x2 - 2ax + a2 ・・・④
②の公式を使用すると
(x + a)(x - a) = x2 + (a - a)x + a(-a) = x2 - a2
よって
(x + a)(x - a) = x2 - a2 ・・・⑤
(展開の公式)
(a + b)(c + d) = ac + ad + bc + bd
(x + a)(x + b) = x2 + (a + b)x + ab
(x + a)2 = x2 + 2ax + a2
(x - a)2 = x2 - 2ax + a2
(x + a)(x - a) = x2 - a2
(因数分解の公式)
ac + ad + bc + bd = (a + b)(c + d)
x2 + (a + b)x + ab = (x + a)(x + b)
x2 + 2ax + a2 = (x + a)2
x2 - 2ax + a2 = (x - a)2
x2 - a2 = (x + a)(x - a)
※高校で習う公式
(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ca)x + abc
(x + a)3 = x3 + 3ax2 + 3a2x + a3
n! = n(n - 1)(n - 2)・・・3・2・1
1! = 0! = 1 とする
nCr = n! / (r!(n - r)!)
例:5C3 = 5! / (3!(5 - 3)!) = 5! / (3!2!) = (5・4・3・2・1) / (3・2・1)(2・1) = (5・4) / (2・1) = 5・2 = 10
(x + a)n = nC0xn + nC1axn - 1 + nC2a2xn - 2 + ・・・ + nCrarxn - r + ・・・ + nCn - 1an - 1x + nCnan
<例>
(x + a)5
= 5C0x5 + 5C1ax5 - 1 + 5C2a2x5 - 2 + 5C3a3x5 - 3 + 5C5 - 1a5 - 1x + 5C5a5
= 5C0x5 + 5C1ax4 + 5C2a2x3 + 5C3a3x2 + 5C4a4x + 5C5a5
= (5! / (0!5!))x5 + (5! / (1!(5 - 1)!))ax4 + (5! / (2!(5 - 2)!))a2x3 + (5! / (3!(5 - 3)!))a3x2 + (5! / (4!(5 - 4)!))a4x + (5! / (5!(5 - 5)!))a5
= (5! / (0!5!))x5 + (5! / (1!4!))ax4 + (5! / (2!3!))a2x3 + (5! / (3!2!))a3x2 + (5! / (4!1!))a4x + (5! / (5!0!))a5
※1! = 0! = 1 or 5! / 5! = 1より
= x5 + ((5・4・3・2・1) / (4・3・2・1))ax4 + ((5・4・3・2・1) / (2・1)(3・2・1))a2x3 + ((5・4・3・2・1) / (3・2・1)(2・1))a3x2 + ((5・4・3・2・1) / (4・3・2・1))a4x + a5
= x5 + 5ax4 + ((5・4) / (2・1))a2x3 + ((5・4) / (2・1))a3x2 + 5a4x + a5
= x5 + 5ax4 + 10a2x3 + 10a3x2 + 5a4x + a5
(分配法則)
a(b + c) = ab + ac
(a + b)c = ac + bc
(多項式の公式)
X = c + d とおくと
(a + b)(c + d) = (a + b)X = aX + bX = a(c + d) + b(c + d) = ac + ad + bc + bd
よって、
(a + b)(c + d) = ac + ad + bc + bd ・・・①
①の公式を使用すると
(x + a)(x + b) = x2 + bx + ax + ab = x2 + (b + a)x + ab = x2 + (a + b)x + ab
よって、
(x + a)(x + b) = x2 + (a + b)x + ab ・・・②
②の公式を使用すると
(x + a)2 = (x + a)(x + a) = x2 + (a + a)x + a2 = x2 + 2ax + a2
よって
(x + a)2 = x2 + 2ax + a2 ・・・③
③の公式を使用すると a を -a とおく
(x - a)2 = (x + (-a))2 = x2 + 2(-a)x + (-a)2 = x2 - 2ax + a2
よって
(x - a)2 = x2 - 2ax + a2 ・・・④
②の公式を使用すると
(x + a)(x - a) = x2 + (a - a)x + a(-a) = x2 - a2
よって
(x + a)(x - a) = x2 - a2 ・・・⑤
(展開の公式)
(a + b)(c + d) = ac + ad + bc + bd
(x + a)(x + b) = x2 + (a + b)x + ab
(x + a)2 = x2 + 2ax + a2
(x - a)2 = x2 - 2ax + a2
(x + a)(x - a) = x2 - a2
(因数分解の公式)
ac + ad + bc + bd = (a + b)(c + d)
x2 + (a + b)x + ab = (x + a)(x + b)
x2 + 2ax + a2 = (x + a)2
x2 - 2ax + a2 = (x - a)2
x2 - a2 = (x + a)(x - a)
※高校で習う公式
(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ca)x + abc
(x + a)3 = x3 + 3ax2 + 3a2x + a3
n! = n(n - 1)(n - 2)・・・3・2・1
1! = 0! = 1 とする
nCr = n! / (r!(n - r)!)
例:5C3 = 5! / (3!(5 - 3)!) = 5! / (3!2!) = (5・4・3・2・1) / (3・2・1)(2・1) = (5・4) / (2・1) = 5・2 = 10
(x + a)n = nC0xn + nC1axn - 1 + nC2a2xn - 2 + ・・・ + nCrarxn - r + ・・・ + nCn - 1an - 1x + nCnan
<例>
(x + a)5
= 5C0x5 + 5C1ax5 - 1 + 5C2a2x5 - 2 + 5C3a3x5 - 3 + 5C5 - 1a5 - 1x + 5C5a5
= 5C0x5 + 5C1ax4 + 5C2a2x3 + 5C3a3x2 + 5C4a4x + 5C5a5
= (5! / (0!5!))x5 + (5! / (1!(5 - 1)!))ax4 + (5! / (2!(5 - 2)!))a2x3 + (5! / (3!(5 - 3)!))a3x2 + (5! / (4!(5 - 4)!))a4x + (5! / (5!(5 - 5)!))a5
= (5! / (0!5!))x5 + (5! / (1!4!))ax4 + (5! / (2!3!))a2x3 + (5! / (3!2!))a3x2 + (5! / (4!1!))a4x + (5! / (5!0!))a5
※1! = 0! = 1 or 5! / 5! = 1より
= x5 + ((5・4・3・2・1) / (4・3・2・1))ax4 + ((5・4・3・2・1) / (2・1)(3・2・1))a2x3 + ((5・4・3・2・1) / (3・2・1)(2・1))a3x2 + ((5・4・3・2・1) / (4・3・2・1))a4x + a5
= x5 + 5ax4 + ((5・4) / (2・1))a2x3 + ((5・4) / (2・1))a3x2 + 5a4x + a5
= x5 + 5ax4 + 10a2x3 + 10a3x2 + 5a4x + a5