TakaPの数学日記

数学を教えていて感じたことや日常の感想などを記録しました。

ガロア理論11具体例を持つ

2016年10月06日 03時25分28秒 | 数学

話が横道にそれたが、体の拡大について。
ある体Fにその体にない元を付け加えて、加減乗除を自由に行って
元を増やして行く。この操作を繰り返すことによって、
もとの体Fを含む体Eを作ることが出来る。こうして出来た体Eを
もとの体Fの拡大体という。

こんなことがArtin の本に書いてあった。これも良く分からなかった。
もとの体を漠然と抽象的な集合の体として考えていたからだ。

具体的な数の集合で考えればよかったのだ。
例えば、もとの体を有理数全体Qとして、その拡大体をQ(√2)とする。
有理数の集合に数√2 を放り込んで、加減乗除を繰り返し、新たな数を
作ってみる。こうしてつぎつぎと数を作り続けると、もうこれ以上は新しい
数が生まれなくなる。こうして出来た数全体がQ(√2)なのだ。
このことは前の記事ガロア理論9で述べた通りだが、後日、TeXという
数式作成ソフトを使ってアップしようと思う。

つづく


コメント    この記事についてブログを書く
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする
« ヤフオクのクラリネットを吹いた | トップ | 西新井大師周辺 »
最新の画像もっと見る

コメントを投稿

数学」カテゴリの最新記事