日本語の「は」と「が」について。

象は鼻が長い=∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
とりあえず「三上文法」を「批判」します。

(1305)「パースの法則(恒真式)」を「否定」すると「矛盾」する。

2024-01-30 17:43:43 | 論理

(01)
(ⅰ)
1 (1)  P→ Q  A
 2(2)  P&~Q  A
 2(3)  P     A
12(4)     Q  13MPP
 2(5)    ~Q  26E
12(6)  Q&~Q  45&I
1 (7)~(P&~Q) 26RAA
(ⅱ)
1  (1)~(P&~Q)  A
 2 (2)  P      A
  3(3)    ~Q   A
 23(4)  P&~Q   23&I
123(5)~(P&~Q)&
       (P&~Q)  14&I
12 (6)   ~~Q   35RAA
12 (7)     Q   6DN
1  (8)  P→ Q   27CP
従って、
(01)により、
(02)
①   P→ Q
② ~(P&~Q)
に於いて、
①=② である。
然るに、
(03)
(ⅱ)
1   (1)  ~(P&~Q)  A
 2  (2) ~(~P∨ Q)  A
  3 (4)   ~P      A
  3 (5)   ~P∨ Q   4∨I
 23 (6) ~(~P∨ Q)&
         (~P∨ Q)  25&I
 2  (7)  ~~P      36RAA
 2  (8)    P      7DN
   9(9)       Q   A
   9(ア)   ~P∨ Q   9∨I
 2 9(イ) ~(~P∨ Q)&
         (~P∨ Q)  2ア&I
 2  (ウ)      ~Q   9イRAA
 2  (エ)    P&~Q   8ウ&I
12  (オ)  ~(P&~Q)&
          (P&~Q)  1エ&I
1   (カ)~~(~P∨ Q)  2オRAA
1   (キ)  (~P∨ Q)  カDN
(ⅲ)
1   (1)   ~P∨ Q   A
 2  (2)    P&~Q   A
  3 (3)   ~P      A
 2  (4)    P      2&E
 23 (5)   ~P&P    34&I
  3 (6)  ~(P&~Q)  25RAA
   7(7)       Q   A
 2  (8)      ~Q   2&E
 2 7(9)    Q&~Q   78&I
   7(ア)  ~(P&~Q)  29RAA
1   (イ)  ~(P&~Q)  1367ア∨E
12  (ウ)   (P&~Q)&
         ~(P&~Q)  12&I
1   (エ)  ~(P&~Q)  2ウRAA
従って、
(03)により、
(04)
② ~(P&~Q)
③  ~P∨ Q
に於いて、
②=③ である(ド・モルガンの法則)。
従って、
(02)(04)により、
(05)
①   P→ Q
② ~(P&~Q)
③  ~P∨ Q
に於いて、
①=② であって(含意の定義)、
②=③ であって(ド・モルガンの法則)、
①=②=③ である。
従って、
(05)により、
(06)
Q=P
といふ「代入(replacement)」により、
①   P→ P
② ~(P&~P)
③  ~P∨ P
に於いて、
①=② であって(含意の定義)、
②=③ であって(ド・モルガンの法則)、
①=②=③ である。
従って、
(06)により、
(07)
「日本語」で言ふと、
① Pであるならば、Pである。
② Pでないか、または、Pである。
③(Pであって、Pでない)といふことはない。
といふ「言ひ方」は、順番に、
① 同一律(恒真)。
矛盾律(恒真)。
③ 排中律(恒真)。
として、
①=②=③ である。
然るに、
(06)により、
(08)
①   P→ P
② ~(P&~P)
③  ~P∨ P
を「否定」すると、
①  ~(P→ P)
② ~~(P&~P)
③ ~(~P∨ P)
に於いて、
①=②=③ であるが、「二重否定律」により、
② ~~(P&~P)
といふ「論理式」は、
②   (P&~P)
といふ「論理式」、すなはち、「矛盾」である。
従って、
(07)(08)により、
(09)
① 同一律(恒真)。
矛盾律(恒真)。
③ 排中律(恒真)。
の「否定」は、「3つとも、矛盾(恒偽)」である。
従って、
(07)(08)(09)により、
(10)
「恒真式(トートロジー)」を「否定」すると、そのときに限って、
「恒偽式(矛盾)」になる。
然るに、
(11)
(ⅳ)
1(1)  ~(P&Q→  P) A
1(2)~{~(P&Q)∨ P} 1含意の定義
1(3)   (P&Q)&~P  2ド・モルガンの法則
1(4)    P&Q &~P  3結合法則
1(5)    P        4&E
1(6)         ~P  4&E
1(7)    P&~P(矛盾) 56&I
(ⅴ)
1  (1)   ~(((P→Q)→P)→ P) A
1  (2)  ~(((~P∨Q)→P)→ P) 1含意の定義
1  (3) ~((~(~P∨Q)∨P)→ P) 2含意の定義
1  (4)~(~(~(~P∨Q)∨P)∨ P) 3含意の定義
1  (5)   (~(~P∨Q)∨P)&~P  4ド・モルガンの法則
1  (6)    ((P&~Q)∨P)&~P  5ド・モルガンの法則
1  (7)     (P&~Q)∨P      6&E
 8 (8)      P&~Q         A
 8 (9)      P            8&E
  ア(ア)            P      A
1  (イ)      P            789アア∨E
1  (ウ)               ~P  6&E
1  (エ)      P&~P(矛盾)     イウ&I
従って、
(10)(11)により、
(12)
⑤    P&Q→P
⑥(((P→Q)→P)→P)
は、「2つとも、恒真(トートロジー)」である。
従って、
(05)~(12)により、
(13)
①    P→ P
②  ~(P&~P)
③   ~P∨ P
⑤    P&Q→P
⑥(((P→Q)→P)→P)
といふ「5つの論理式」、すなはち、
① 同一律。
矛盾律。
③ 排中律。
④ 連言除去。
⑤ パースの法則。
は、「5つとも、恒真(トートロジー)」である。
然るに、
(14)
(ⅵ)
1(1)~{ ∀x(Fx)→∃x(Fx)} A
1(2)~{~∀x(Fx)∨∃x(Fx)} 1含意の定義
1(3)  ∀x(Fx)&~∃x(Fx)  2ド・モルガンの法則
1(4)  ∀x(Fx)          3&E
1(5)     Fa           4UE
1(6)         ~∃x(Fx)  3&E
1(7)         ∀x(~Fx)  6量化子の関係
1(8)            ~Fa   7UE
1(9)     Fa&~Fa(矛盾)   58&I
従って、
(10)(14)により、
(15)
⑥ ∀x(Fx)→∃x(Fx)
⑥ すべてのxがFであるならば、あるxはFである。
といふ「述語論理式」も、「恒真(トートロジー)」であるが、
⑥ ∀x(Fx)→∃x(Fx)
といふ「式」は、「命題論理」に於ける、
⑤ P&Q→P(連言除去)
⑤ PであってQであるならば、Qである。
に「相当」する。
然るに、
(16)
(ⅰ)
1  (1)  (P→Q)→P   A
1  (2) ~(P→Q)∨P   1含意の定義
 3 (3) ~(P→Q)     A
 3 (4)~(~P∨Q)     3含意の定義
 3 (5)  P&~Q      4ド・モルガンの法則
 3 (6)  P         5&E
  7(7)        P   A
1  (8)  P         13677∨E
   (9)((P→Q)→P)→P 18CP
(ⅱ)
1  (1)   ~(((P→Q)→P)→ P) A
1  (2)  ~(((~P∨Q)→P)→ P) 1含意の定義
1  (3) ~((~(~P∨Q)∨P)→ P) 2含意の定義
1  (4)~(~(~(~P∨Q)∨P)∨ P) 3含意の定義
1  (5)   (~(~P∨Q)∨P)&~P  4ド・モルガンの法則
1  (6)    ((P&~Q)∨P)&~P  5ド・モルガンの法則
1  (7)     (P&~Q)∨P      6&E
 8 (8)      P&~Q         A
 8 (9)      P            8&E
  ア(ア)            P      A
1  (イ)      P            789アア∨E
1  (ウ)               ~P  6&E
1  (エ)      P&~P(矛盾)     イウ&I
   (オ)  ~~(((P→Q)→P)→ P) 1エRAA
   (カ)     ((P→Q)→P)→ P  オDN
従って、
(16)により、
(17)
① ├((P→Q)→P)→P
② ├((P→Q)→P)→P
といふ「パースの法則(恒真式)」がそうであるやうに、
①「恒真(トートロジー)」とは、「仮定の数が0である」所の、「連式の結論」である。
②「恒真(トートロジー)」とは、「仮定の数が0である」所の、「連式の結論」である。
然るに、
(18)
①「仮定の数がである」。
②「仮定の数がである」。
といふことは、
①「恒真(トートロジー)である」。
②「恒真(トートロジー)である」。
といふことに、「他ならない」。



最新の画像もっと見る

コメントを投稿