(01)
① ∀x(Sx→P)
② ∃x(Sx&P)
に於いて、
Sは「述語文字(Predicate letter)」であるが、
Pは「命題関数(Propositional function)」であるとする。
従って、
(01)により、
(02)
① ∀x(Sx→P)
② ∃x(Sx&P)
は、例へば、
① ∀x(象x→動物x)
② ∃x(動物x&象x)
① ∀x{少年x→∃y(少女y&愛xy)}
② ∃x{少女x&∀y(少年y→愛yx)}
① ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}
② ∃x{象x&∃y(鼻yx&長y)→∃z(~鼻zx& 長z)}
である。
従って、
(01)(02)により、
(03)
① ∀x(象x→動物x)=象は動物である。
② ∃x(動物x&象x)=ある動物は象である。
① ∀x{少年x→∃y(少女y&愛xy)}=少年、みな、その愛する所の少女有り。
② ∃x{少女x&∀y(少年y→愛yx)}=ある少女、すべての少年の愛する所となる。
① ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}=象は鼻が長い。
② ∃x{象x&∃y(鼻yx&長y)→∃z(~鼻zx& 長z)}=ある象は鼻も長い。
は、それぞれ、
① ∀x(Sx→P)
② ∃x(Sx&P)
に於ける、「SとPに対する、代入例(Substitution instances)」である。
従って、
(01)(02)(03)により、
(04)
「述語論理(Predicate logic)」といふ「観点」からすると、
① 象は動物である。
② ある動物は象である。
① 少年、みな、その愛する所の少女有り。
② ある少女、すべての少年の愛する所となる。
① 象は鼻が長い。
② ある象は鼻も長い。
等に於ける「主語(Subject)」と「述語(Predicate)」は、
① ∀x(Sx→P)
② ∃x(Sx&P)
に於ける、「S(述語文字)」と「P(命題関数)」である。
といふ、ことになる。
最新の画像[もっと見る]
- (219)「雜説・韓愈」の述語論理(Ⅱ):「返り点」に注意。 6年前
- (148)足りないのは「和文力」。 6年前
- (145)「雑説、韓愈」に於ける「連言の否定」(Ⅴ) 6年前
- (142)「雑説、韓愈」に於ける「連言の否定」(Ⅱ)。 6年前
- (141)「雑説、韓愈」と「連言の否定」。 6年前
- (139)『括弧』と『返り点』。 6年前
- (137)「君子不以其所以養人者害人」等の「不」について。 6年前
- (135)「以十五城(副詞句)」の位置について。 6年前
- (130)「白話文(北京語)」の、有り得ない「返り点」について。 6年前
- (130)「白話文(北京語)」の、有り得ない「返り点」について。 6年前
※コメント投稿者のブログIDはブログ作成者のみに通知されます