福井大学の入試問題があった。面白いので紹介する。
問題
⑴ nは2以上の自然数、r>0とき、
(1+rⁿ⁻¹)/2≧(1+r+r²+…+rⁿ⁻¹}/n
を示せ。
⑵ 等差数列 (a[n]) (n≧1) と、公比が正の等比数列 (b[n]) (n≧1) において、a₁=b₁、
a[n]=b[n]、a₁ > 0とすると
a₁+a₂+…+a[n]≧b₁+b₂+…+b[n]
を示せ。
証明
(1)
n(1+rⁿ⁻¹)≧2(1+r・・・+rⁿ⁻¹) を示せば良い。
n=2 のときは自明。
nのとき、成立を仮定し、n+1の時を考える。
(n+1)(1+rⁿ)=n(1+rⁿ)+1+rⁿ=n(1+rⁿ⁻¹)+n(rⁿ-rⁿ⁻¹)+1+rⁿ
nのときの仮定から
(n+1)(1+rⁿ)≧2(1+r・・・+rⁿ⁻¹)+n(rⁿ-rⁿ⁻¹)+1+rⁿ
=2(1+r・・・+rⁿ)+n(rⁿ-rⁿ⁻¹)+1-rⁿ
したがって、n(rⁿ-rⁿ⁻¹)+1-rⁿ≧0 を示せばよい。
n(rⁿ-rⁿ⁻¹)+1-rⁿ=nrⁿ⁻¹(r-1)+1-rⁿ
=(1-r){-nrⁿ⁻¹+(1+r+・・・+rⁿ⁻²+rⁿ⁻¹)}
=(1-r){(1-rⁿ⁻¹)+r(1-rⁿ⁻²)+・・・+rⁿ⁻²(1-r)+0}
=(1-r)²{(1+r+・・・+rⁿ⁻²)+r(1+・・・+rⁿ⁻³)+・・・+rⁿ⁻²}
=(1-r)²{1+2r+3r³+・・・+(n-1)rⁿ⁻²}
r>0だから、右辺は0以上で、命題は帰納法により証明された。
(2)
na₁+{n(n-1)/2}a≧a₁(1+r+・・・+rⁿ⁻¹)
を示せばよい。
a[n]=b[n] から
a₁+(n-1)a=a₁rⁿ⁻¹
を使って
na₁+{n(n-1)/2}a=na₁+(n/2)(a₁rⁿ⁻¹-a₁)=(a₁n/2)(2+rⁿ⁻¹-1)
=(a₁n/2)(1+rⁿ⁻¹)
したがって、a₁>0 なので与式は
(a₁n/2)(1+rⁿ⁻¹)≧a₁(1+r+・・・+rⁿ⁻¹)
→ (1+rⁿ⁻¹)/2≧(1+r+・・・+rⁿ⁻¹)/n
となる。これは(1)で証明したので命題は成立。
等号成立はいづれも r=1 の場合となることは自明。
以上