goo blog サービス終了のお知らせ 

Memorandums

知覚・認知心理学の研究と教育をめぐる凡庸な日々の覚書

Murray, Sekuler, & Bennett (2001)

2005-06-23 | Research: V. Interp.
Psychonomic Bulletin & Review2001, 8 (4), 713-720
"Time course of amodal completion revealed by a shape discrimination task"
RICHARD F. MURRAY, ALLISON B. SEKULER, andPATRICK J. BENNETT

GENERAL DISCUSSION
The finding that amodal completion can affect performance in perceptual tasks, but only if given enough time,is consistent with earlier reports. Our estimates of the time required for completion ranged from 46 to 114msec, and averaged to 75msec.Although our results clearly indicate a time course for completion, our estimate of its duration should not be taken as a fixed constant of visual processing. It is becoming increasingly clear that the time required for completion is not fixed but varies with task and stimulus.
Sekuler and Palmer’s (1992) first primed-matching studyfound amodal completion to require 100-200msec;however, in a later primed-matching study, Guttman and Sekuler (2001) found that completion time varied fromless than 75msec to over 200msec, depending on howmuch of the stimulus was occluded. Shore and Enns (1997) manipulated the amount of occlusion in theirstimuli, and they also found shorter completion times forsmaller amounts of occlusion. Using performance in a shape discrimination task as a measure of completion,Ringach and Shapley (1996) found amodal completionto require 120-170msec. This is longer than the estimate we found using similar methods, but their stimuli werevery large (17°×17°) and highly occluded (80%), so if completion time increases with the amount of completion required, a longer time course would be expected(Guttman & Sekuler, 2001; Shore & Enns, 1997). Although it is difficult to compare the completion times obtained in different studies directly, the fact that studies with different methods and stimuli all conclude thatamodal completion has a rapid but measurable time course provides converging evidence and makes it unlikely that the time course is an artifact of the methodsemployed.

コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

Time course of completion

2005-06-23 | Research: V. Interp.
The time course of visual completion measured by response classification
E. Shubel & J.M. Gold Vision Sciences Society (Poster) 2003
http://vislab.psych.indiana.edu/~jgold/jgold/jmg/presentations.html

cf. Time course of completion
Murray RF, Sekuler AB, & Bennett PJ (2001). Time course of amodal completion revealed by a shape discrimination task. Psychonomic Bulltin & Review, 8(4); 713-720. : 46-114ms
Ringach DL, Shapley R (1996) Spatial and temporal properties of illusory contours and amodal completion. Vision Research 36(19): 3037-50. : 120-170ms
Sekuler AB & Palmer SE (1992). Perception of partly occluded objects: A microgenetic analysis. JEP: General, 121:95-111. : 100-200ms
コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

article

2005-06-13 | Research: V. Interp.
Discussion

Guttman. & Kellman. (2004) p.1811
contour completion 120 ms
cf. Ringach & Shapley (1996) contour processing 117 ms , global integration + (140-200) ms

parallel processing of real and interpolated contour
<--- lower level network model (eg., Field et al., 1993; Yen & Finkel, 1998)
<---> higher-order operator (eg., Heitger, von der Heydt, Peterhans, Rosenthaler, & Kuebler, 1998)

References
Ringach & Shapley (1996) Vis. Res, 36,3037-3050.
コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

article

2005-06-10 | Research: V. Interp.
Results
Dot localization:
imprecision & error in location as a function of SOA

データ確認、ANOVA
コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

ロジスティック関数の利用

2005-06-10 | Research: V. Interp.
Guttman & Kellman (2004) p.1809

Exp.3 Dot localization paradigm
Psychometric function
the proportion of trials on which the observer responded "outside" as a function of dot position

y=δ+(1-2δ)/(1+exp(α(μ-x)))

α:slope of the curve
μ:midpoint around which the curve is rotationally symmetric
δ:the minimun and maximum value of the function

------
最近のニューラルネットワークでは、閾値関数の代わりに、入力が負から正へ変化する時その出力も滑らかに変化する出力関数としてロジスティック関数が用いられる。

References
Guttman SE, Kellman PJ. (2004) Vision Res. 2004;44(15):1799-815.
栗田多喜夫/ニューラルネット入門
http://www.neurosci.aist.go.jp/~kurita/lecture/neuro/node6.html


コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

smooth, curved interpolation

2005-06-08 | Research: V. Interp.
Kellman & Shipley (1991) Appendix 2, Ullman (1976)
Fontani & Gerbino (2003)
...
The exact form of smooth, interpolated contours has proven difficult to determine, as many models make similar predictions in many circumstances.
...
Saidpour, Braunstein, & Hoffman (1994): the shape of surface interpolation in structure from motion display

<3D extensions of the models proposed by Ullman (1976) and Kellman and Shipley (1991) <3D model of interpolation based on minimization of the quadratic variation function: Gimson (1981)
References
Kellman, Garrigan, & Shipley in press.
(p.14)


コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

Guttman SE, Kellman PJ. (2004) ---(2)

2005-05-03 | Research: V. Interp.
Experiment 3

SOA 40---200,240,320 ms
Imprecision of illusory contour perception
decreased monotonically and reached symptote at 120ms.

Vision Res. 2004, 44, 1799-1815.
コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

Kellman,P.J.,Garrigan,P.,&Shipley,T.F. in press

2005-04-30 | Research: V. Interp.
Object Interpolation in Three Dimensions
Kellman,P.J.,Garrigan,P.,&Shipley,T.F.
In press.
コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

Guttman SE, Kellman PJ. (2004)

2005-04-24 | Research: V. Interp.
Vision Res. 2004;44(15):1799-815.

Contour interpolation revealed by a dot localization paradigm.

Guttman SE, Kellman PJ.

University of California, Los Angeles, USA. sharon.guttman@vanderbilt.edu.au

Contour interpolation mechanisms allow perception of bounded objects despite incomplete edge information. Here, we introduce a paradigm that maps interpolated contours as they unfold over time. Observers localize dots relative to perceived boundaries of illusory, partly occluded, or control stimuli. Variations in performance with dot position and processing time reveal the location and precision of emerging contour representations. Illusory and occluded contours yielded more proficient dot localization than control stimuli containing only spatial cues, suggesting performance based on low-level representations. Further, illusory contours exhibited a distinct developmental time course, emerging over the first 120 ms of processing. These experiments establish the effectiveness of the dot localization paradigm for examining interpolated edge representations, contour microgenesis, and the underlying processing mechanisms.
コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

Components of Spatio-temporal Relatability

2005-03-02 | Research: V. Interp.
Geometry of relatability
Assumptions of persistence and positional updating

Formalizing Spatio-temporal Relatability


Reference
Palmer, Kellman, & Shipley (under submission) p18
コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

Position-updating hypothesis

2005-02-25 | Research: V. Interp.
dynamic occlusion
<--- a retinoscopic representation
<--- a distal representation

cf. anorthoscopic perception

Reference
Shipley & Cunningham (2001)
コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

Persistence hypothesis

2005-02-25 | Research: V. Interp.
shape: Turvey & Kravetz, 1970
stimulus motion direction: Demkiw & Michaels, 1976; Shioiri & Cavanagh, 1992




References
Shioiri, S., & Cavanagh, P. (1992) Visual persistence of figures defined by relative motion. Vision research, 32(5), 943-951.
Turvey, M., & Kravetz, S. (1970) Retrival from iconic memory with shape as the selection criterion. Perception & Psychophysics, 8(3), 171-172.
コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

Palmer, Kellman, & Shipley under submission

2005-02-03 | Research: V. Interp.
A Theory of Contour Interpolation in the Perception of Dynamically Occluded Objects

Evan M. Palmer and Philip J. Kellman University of California, Los Angeles
Thomas F. Shipley Temple University

under submission

Abstract
Humans readily perceive objects from visual information that is fragmented across space and accumulated sequentially over time, yet spatiotemporal object formation is poorly understood. We propose a new theory of contour interpolation and object formation for moving, partially occluded objects. The theory of spatiotemporal relatability (STR) extends the Kellman & Shipley (1991) theory of spatial relatability to predict visual unit formation for moving objects whose edges are revealed at different times throughout the visual field due to occlusion and object or observer motion. We report results of two studies using dynamically occluded objects that support the predictions of STR. A third study using dynamic illusory objects provides results consistent with the identity hypothesis in the spatiotemporal domain?that amodal and modal completion share common contour interpolation processes. Based on these results, we offer a formal account of STR that specifies the spatial and temporal relationships among visible regions that lead to visual unit formation. We propose that STR involves a particular kind of mental representation, the dynamic visual icon, which maintains the shape and current position of occluded regions of moving objects for a short time after their disappearance and allows for their perceptual unification with visible regions.

http://homepage.mac.com/evanpalmer/FileSharing2.html
コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする