goo blog サービス終了のお知らせ 

日々の記録

ほどよく書いてきます。

TELEDYNE

2024-10-05 00:24:15 | その他雑記

テレダインのロゴの入ったものが入荷してきた。

Teledyne LeCroyはオシロスコープで有名だが、Teledyne CETACという会社のものが来た。

こういうやつ。オートサンプラーといって、試験管にチューブを突っ込んで順次吸い上げてくれるものである。

手動で、順次切り替えると2分か3分ごとに手を動かさないといけないけど、自動でやってくれるのでサンプルが100個あっても順次装置に送り込んでくれて便利である。買ったのはASX-280というもので、120個の試験管まで載る。

 

 

これにハミルトンの電動シリンジをくっつけたものも発売されていて、希釈作業が行える。

 

任意の体積の液体を吸って吐き出し、そこに別の液体をまた任意の量吸って吐き出すことができるので、希釈というプロセスをすべてカバーできると考えた。

液体Aから0.1mlとって、液体Bから0.2mlとって、合計が10mlになるように液体Cを足す、みたいなことができるのだが、なれるまでちょっと時間が掛かりそうだ。

吐出を勢い良くやると試験管の底で液体がUターンして上に吹き上がるので、吐出量はちょっと調整する必要がある。

失敗したくないので、ゆっくりでもいいから、吐出を控えめにしようと思ったが、今度はノズルの先端に液滴が残るなどのこともある。いい塩梅を見つけるのに苦労するぞ、これ。


ICP-OES

2024-09-29 16:16:56 | その他雑記

ICP-OES導入に関わったので、いくつかメモを残しておく。

ICP-OESはアルゴンプラズマに霧状にした液体(測定対象サンプルを含む)を導入し、炎色反応を見る装置。濃度と発光強度に相関がある(多くの場合ではリニア)ので、ここから濃度を算出するものである。

【原子吸光】
ICP発光よりも安価な装置にフレーム原子吸光というものがある。炎の中にやはり霧状にしたサンプルを入れ、炎の中に導入し、原子化し、そこに測定対象元素の光を入れて光の吸収を見るもの。こちらは分光器が必要ないので、装置そのものが安価らしい。水銀計測は水銀ランプ光源で良いので、あまり特殊な光源が必要ないというメリットがあるかも。

ホロカソードランプ(Hollow Cathode Lamp)という重水素ランプにちょっと測定対象元素を添加すると、元素の発光が得られる(例えばナトリウムなら黄色の単色光が得られる、非常に波長選択性の高い光が)。これを炎に通すと炎の中の原子が吸収、減光するのでその減光具合から濃度が分かるというものである。対象元素の数だけホロカソードランプが必要という欠点があるものの、対象元素が少ない場合は安価に測定できる。

最近はグラファイトファーネスの固体原子吸光なるものも出てきているが、これは噴霧系じゃないのでまた別かなあ。

 

【ICP-OES】
世界最大手はPerkiElmerのようだがAgilentもなかなか強いかもしれない。他にもThermoFisherやSPECTRO, AnalytikJena、日本では島津製作所、堀場製作所、日立ハイテク(もともとSIIかな)なども作っている。日本法人はそれほど規模が大きくなく、Agilentのほうが規模が大きい。なので、日本で買うならアジレントでいいような気がする。アジレントはHPが充実していて、初心者からある程度理解できるようなページになっている。
ちなみに、PerkinElmerの装置を導入しました。

ICP-OESはおおよそ180nm〜800nmくらいの波長の光を分光器でわけ、波長を0.001nm刻みくらいで測定して、原子発光の輝線を分ける。

分光器(と検出器の組み合わせ)により、マルチとシーケンシャルに分かれる。

・シーケンシャル:
分光器や検出器を動かしながら(通常は分光器が動く)で波長スキャンをかけながら発光強度を得ていくもの。全波長スキャンするのには時間がかかるが、分光器と検出器がやや安価なので、装置が安い(島津製作所 ICPS-8100、日立PS3500DDII,堀場Ultima Expartなど)
昔はフォトマルチプライヤーで検出していたが、最近はCCDアレイやCMOSアレイで検出するので波長スキャンしないものも出てきている(PerkinElmer Avio220Max)
大型の分光器を搭載しやすいので、波長分解能に優れる(とされてきた)。

・マルチ:
特殊な分光器を搭載し、分光された光を折り返し、二次元にすることで、全波長帯を一度の撮影で得るタイプ。
https://scied.ucar.edu/image/sun-spectrum

ちょっと分光器と検出器が特殊なのでやや高くなるが、メリットは測定時間の短縮化。元素が増えても測定時間は一定なので、数こなしていくならこちらこちら。ほとんどのメーカーがマルチタイプを販売している。

かつてはシーケンシャルタイプのほうが分解能が高く、ここがメリットとも言われていたが近年のマルチは特に問題なく波長分解できるので、よっぽど特殊な組み合わせで無い限りは大型分光器は必要なさそう。

・その他:
SPECTRO ARCOSは面白い形式で、分光した先に多数の検出器を並べておくというスタイル。XRFにも同じ原理の装置がある。測定時間短時間化がメリットだが、マルチタイプに勝るメリットがあるかというと感度、かな。

 

 

アジレントのよいところ、オプションのSKDを購入すると、装置の制御がほぼすべて外部から可能なので、測定システムを作るときには都合が良い。

パーキンの良いところ、Avio220は完全停電からの復帰が早くて良い。

 

また書く。


メモ(保育園運動会の一部)

2024-09-29 13:50:13 | その他雑記

保育園イベントのメモ

 

綱引き要領
3歳組、4歳組、5歳組、6歳組の4チームをトーナメント対戦し、3回試合を行う。


協議終了(勝敗判断)判断
ルール:綱を2m引っ張った方を勝ちとする。また1分間の時間内に勝敗がつかない場合は優勢な方を勝ちとする。
(日本綱引き連盟では4m引いたら勝ちだが、小学生は2mの場合が多いようだ。無理しない距離にしたい)
違反行為:おしりをつける、スパイクシューズ着用、素足

役割:
・審判、司会、タイムキーパー(1名)
 全体誘導のアナウンスなどの司会
 トーナメント表の作成印刷、勝敗の判断
 (pdfで作って保育園のA3プリンタ借りる?)
 制限時間1分の計測(ストップウォッチあり)

・綱用意、片付け(2名)初回の綱位置調整と、終了後の綱片付け
 試合開始前に綱を引き出し、中央位置を確認する
 勝敗ラインの線引き?

・選手誘導係(各クラス役員または競技選手代表、各クラス2名)
 クラスの選手に声をかける(声がわからないと声掛け難しい)

備品(保管場所):
・トロフィーと短冊(コピー室)
・ストップウォッチ(コピー室)
・父母会旗(プレイルーム※)
・父母会はちまき(プレイルーム)
・つな(北東倉庫)
※他の運動会備品と一緒に保育園が倉庫からプレイルームに移動

協議段取り(優勝トロフィーその後の扱い)
1.トロフィーなどは放送テントに事前に準備
2.綱のセンターを所定の位置に揃える(綱の両端に2名、中央確認に1名)
3.選手入場と整列(司会がアナウンスし、各クラス役員 or 代表が選手に声をかける)
4.選手が並んだら一礼して競技開始(司会)
5.勝負がついたら一番後方の選手に綱の位置を中央に戻してもらい、次の選手入場へ
  センターライン、勝敗ラインが消えていたら審判が書き直す
 全チーム終了まで、3に戻って繰り返す(決勝後は綱戻し、千引きなし)
6.決勝戦終了したら、優勝チームにはその場で待機を依頼。
  トロフィー短冊にチームを書き込み、優勝チームに表彰式で渡す。
  (その間に綱の回収を実施)
  
7.優勝トロフィーは各クラスの前に1週間程度掲示し、コピー室にしまう。


アカデミア

2024-08-25 23:55:41 | その他雑記

日本の大学の先生の給与が低いのではないかと漠然と思っていたが、他企業の研究者と話してやはりそんな話になった。教授がどの程度の給与水準かはわからないが、2000万から2500万円くらいの給与水準が必要なんじゃないかな。

企業の努力として技術を量産に持ち込み市場に供給するところがあるが、この技術そのものを発見したり発明するのは大学などの先行研究の「アタリ」に依存するところがあると思っている。 

個人的に考えている研究には次の2つの大別があって
・アカデミック側(科学)
・エンジニア側(工学)

アカデミック側としてはコスト度外視で実現可能な技術が存在するのか、それを実現する科学技術はなにかといったところを見ていくものだと思っている。何かが起こっているその背景にあるサイエンスはなにかを突き詰めていく領域。

エンジニア側としては、一定の開発コスト制約のもと、一般社会が受け入れ可能なコストで製品を量産していくことと思っている。

 

アカデミック側は実現可能かの約束は必要とせず、100に一つ、1000に一つ、あたり技術があったら大発見な領域で、コストとしては大きいだろうが、ある人の気づきや好奇心、それを支える根気が新しい領域を開拓していくと思っている。この領域への投資はやはり国家レベルでやっていかないといけないように思っている。あたりを探すための投資であって、これはコスパといった議論を持ち出すべきではない領域だと思っているし、本当にこうした新規開拓に向いている人を確保するためにはアカデミア領域への高給配備が必要だと思っている。工学領域を前提にしているが、これが食料関係の開発だったら新しい品種の農作物を開発できたらどれほどの命を救えるのか。

エンジニア側としては、スマホが100万円じゃ普及しないので、ある程度安価な製品を生産できるようなところを目指すので、どうしてもコスパといった概念が出てくるし、必要なことなので、必要なことだと思っているが、これはアカデミアではなく、エンジニアのやること。エンジニアが拾ってくる種をアカデミアが作っていけないと将来芽吹くものがなくなってしまうように思っているし、そのそのアカデミアの貯蓄が尽きつつあるように思う。芽吹かなかったから無駄だとは思えず、その過程で気がついたことや、新しく気づくことがあるので、「あることを極めよう」というマインドには副次的な作用があるはず。最近のノーベル賞受領もうっかりから新しい発見があることがあるように、正攻法では無いところにヒントがあることも多いと思うが、これは日々やっていないと気が付かない領域。

 

ふと思うのだが、ある程度豊かになってくるとあまりそれ以上を望まなくなってきて、10年20年先のことを考えにくくなるのでは無いかとも思っている。例えば日本は戦後のどん底から這い上がってきたとき、10年先、自分の子供世代の40年先に明るい未来を感じて頑張ってくれた先人が多数いたと思うし、それを引っ張る人たちには例えば軍の開発を文字通り命がけで実施していた人が多く教鞭を採った時代だったように思う。

現在、ある程度不自由のない時代だと思う。自分が食べるのに困らないような時代の生まれなので、子供の世代も同じように生活できるという漠然とした期待があるようにも思うが、生き残るためにはどうしても競争があって、他国に負けてしまうと、食料を買い負けて困窮することも十分考えられる(国内の食料自給率を見ると、経済力減衰は結構やばくて、食べるに困るが現実になるかもと思ってる)。実際地下資源、農作物をそれほど多く生産出来ない日本は技術で競り負けることが危険である。

科学も技術も死屍累累の上にあることを前提に、この領域に国家が投資をしてほしいと思っている。

 

一つ難しいのは、大学は教育機関なのか、研究機関なのかの千引である。個人的には大学までは教育機関で、大学院以降は研究機関であって良いと思っている。大学院時代は研究手伝って給与が出ない大学院生微妙だなとも思っていたのではあるが、なんとなく大学院に行ってしまう環境も微妙な気がする。

大学まではやはり学生にどのように学問が重要で面白いことなのかを伝えて行くことに強い先生が必要だと思う。面白いんだという気づきを与えられる人材がほしい。研究が得意じゃないけど、こうした講師活動に向いている人材発掘も必要だろう。こうおもうと「講師」というのも大事な仕事だが、この点はあまりフォーカスされていないように思う。Youtubeにヨビノリという方がいるが、この点を説明していて確かにと思った。大学は人気講師を予備校に給与で競り負けないようにしてほしい。

 

教鞭を取るという面、研究を進めるという面、この両方に必要なことが何かを考えていくことが10年後20年後、ひいては100年後の国力にもつながっていくように思う。

大学教授は7万人もいるらしい。彼らに2000万円/年の給与を出すには、4000万円/年くらいの予算が必要であろう。2.8超円の予算か。国民一人年間1.5万円の負担くらいかな。


住まい

2024-07-16 23:05:48 | その他雑記

実家から離れたところでマンションを買った。中古で。

親元を離れ、子育てをしていると思うが、親は色々頑張ってくれてたんだなって思う。生きているうちに孝行しないといけないなと切に思う。

現在中古マンションを購入して生活しているが、ある程度老朽化してきた段階を考えると、マンションがいいのか戸建てがいいのかと再度考えることが多い。

 

戸建ての良い所は、決定権がすべて自分にある所である。修繕やら改造やら誰も反対しない。

マンションの良い所は、セキュリティーが良かったり、天井が熱くないとか、売却しやすいとかかな。

 

戸建ての悪いところは余り思いつかないが、都会だと土地が高いと言った所か。

マンションの悪い所は、経年劣化の修繕が高額なので年数が経過するほど維持管理にコストがかかっていくこと、建て直しが大掛かり過ぎて誰も判断できなくてどこかで詰みそうな所。

 

友人と話して思うのだが、家は二度立てろみたいな格言があるようで、確かにと思う。戸建てもマンションも住んで見ないとわからないことがあるので、色々経験しないといけないなと。
戸建てを買った友人は、風呂などにもう少しコストをかければ良かったとか、それなりに思う所があるようだ。

 

築20年ほどのマンションを買って思うのは、
・10年くらいのマンションを中古で買って生活の上で必要なことを把握する
・ある程度生活の理想や、子供の成長で部屋がほしいみたいな具体的な生活が見えてきたら戸建てに引っ越し
 (当該時期にマンションの資産価値が高いという期待による)
・戸建てかっていい感じに生活する
 (子供が独立したら、あとは自分の城になる、な感じ)

なのかなー。


ステンレス包丁

2024-07-12 21:52:54 | その他雑記

ステンレスの包丁を買った。安田刃物の関虎徹V金10号三徳包丁180mm

8360円なり。

同梱されていた説明書に720HVと書いてあり、61HRCほどの硬さであることがわかる。職業柄HVのほうが理解しやすい。

切れ味は、思いの外というか、だいぶよくて、結構すっと切れていく。刃先がとても鋭利というわけではないのだが、刃がスルスルと入っていく感じ。不思議である。

まあ、いままで使っていた2000円くらいの包丁よりはだいぶいいだろうな。

 

鍔のところを見ると鍔は接合で別の材料を持ってきているようだ。もうちょっと高い包丁だと鍛造で盛り上げていたりして刃物と鍔の隙間がないものがある。ここに塩が溜まったりして錆びてこなければ良いが・・・


ハムノイズ

2024-06-06 00:57:57 | その他雑記

1kHzで取得したデータを見ていると正弦波に隠れて別の信号が入っているようだ。これはハムノイズではないかな?

ということで、除去の方法を考えてみた。

試験周波数は25Hzでハムノイズは60Hzなので約2倍の周波数の隔たりが有る。

一次のLPFでカットオフ周波数を25Hzにすると、25Hzでは-3dBで60Hzでは-8dBくらい。うーん。一次のLPFではちょっと厳しいな。

 

などと思っているときに気がついた。デジタルデータなんだから、デジタル処理しちゃえばいいじゃないかと。FFTして高周波カットしてから逆FFTなどやり方はいくつかありそうだな。

ためしてみよう。

 

試すためにももとデータがないので、一旦ダミーでデータを作ってみようとなった。
25Hzの信号に60Hzのハムノイズが重畳している状態を作ってみる。
最近流行っているPythonなるものに手をだしてみた。

 

 

上のグラフだとわかりにくいが、時間を伸ばしていくと、測定したい25Hzの信号に60Hzの信号が乗ることで各サイクルのピークトップがぶれている。これが今データ処理で問題なのでダミー信号の再現はうまく言っている。

 

データ数を4096個にしてからFFTをかけてみると、ちゃんと25Hzと60Hzに信号が出てきている。
60Hzの信号を消して逆FFTしたらアナログ回路では実現できないような急峻なフィルタ特性が得られるに違いない。

 

50Hzくらいから高周波をカットして

 

逆FFTをすることで戻ってくる。ピークトップの振動がなくなっているようである。



 

端部においては高周波成分があるので、歪みが生じるが、気にならない。


 

多少時間が経過した後はきれいな波形になっているようである。

 

 

ちょっとPythonを触ってみた感じでは、配列をそのまま引数にして関数に作用できる点が良い。
例えばtime[] = 0,0.01,0.02,0.03,,,, 0.99のように0.01刻みで100個有る配列から例えば、
for i = 0 to 99
     signal = A * frequecy * time[i]
next i
とやって個別に要素を計算する必要がありそうなものだが、
signal = A*Frequency*time
でループを回した計算が実施できる。

そのへんが使い勝手良さそうだ。


1kHzログその後

2024-06-03 23:39:21 | その他雑記

1kHzのログデータその後ですが、なんとかなりそうな感じですね。

さすが高級キーエンスのデータロガー。1kHzサンプリングデータでも後からデータ圧縮として、1000個のデータの最大値最小値を出力できるので、とりあえずキーエンス純正のデータフォーマットで保存しておき、後から変換をすると大丈夫。

端的にはこれがオチなのですが、繊細な歪を扱うとハムノイズとかも除去したくなるので、一旦たくさんのデジタルデータを残しておいて、最後にIIRフィルタみたいな急峻なフィルタで試験周波数の25Hzと60Hzをうまく分離したほうがいいのかな、なんて思っています。

キーエンスのデータロガーはなかなか良い使い勝手でさすが高級品と思えます。

 

一方で疲労試験機はロードセルのアンプがシールドなしにインバーターと同じ空間に設置されているなど結構ノイズがひどい(出力にオシロをつないでも高周波ノイズたくさん)ので、プロトタイプっぽい時代に買ったものなのかなって思いました。装置は25Hzまでの試験なのでLPF入れたらある程度良いとはいえ、もうちょっとノイズ気にしようよって思った。

 

備忘:
キーエンスのデータロガー、軽くて良いのだが、軽すぎる。設置しておいてもひょんな接触でうごいちゃうので配線がちょっとスパゲッティに成りがちな時にショートリスクあり。


データログ

2024-06-01 08:14:29 | その他雑記

ちょっとしたことで、疲労試験のデータをとったが、1kHzサンプリングするととんでもないことになる。

実験前に十分わかってはいたが、毎秒1000行のデータが出てくるので、10時間も試験したら3600万行になる。もちろんエクセルでは開けないので処理に困る。200万行ごとのデータが30個あったので、結果的には6000万行程あったのかな。合計ファイルサイズ2.5GB。

エクセルマクロで処理して片付けたのだが、なかなか手間がかかった。

25Hzで振動する装置振幅のピークを検出してデータログしたいという思惑があったのだが、ピークホールド回路などを作る前にデジタル的に記録して後から処理、というようになったのだが、やっぱりピークホールド回路つくって、高速サンプリングじゃなく、低速のサンプリングでなんとかするようにしよう。

装置の出力は300mVくらいしかなく、インバーターノイズも入っているので。

・ローパスフィルタでのノイズ除去
・場合によっては増幅回路(後のデータロガーで扱いやすい電圧に)
・ピークホールド回路(とリセット回路)

こんなところからやっていこうかな。


保育の現場

2024-05-30 00:02:00 | その他雑記

子供が生まれ、保育園に子供を通わせている一人の親として。

子供が毎日保育園で楽しそうにしているのはとても喜ばしいし、毎週泥だらけの靴を見て、楽しく遊んだなーって思い充実した保育園生活を送っているのだろうと思っています。

人との付き合い方の勉強、友たちとの喧嘩や一つしか無いおもちゃの取り合い、我慢を覚えるとか、家だとつい甘やかしちゃうところなんかも結構身につけているみたいでとても嬉しい。

子供の幸せを願っている親としてはとても良い環境だなと思っています。

 

子供の幸せを支える保育士の人、保育園運営の法人なども皆子供を通して幸せであってほしいとも思っていますが、実際の保育士の待遇(職務の大変さであったり給与面であったり)については、世間の企業からみてもおそらく遅れている部分が多分にあるとも思っています。

保育園にもPTAみたいな組織があって、一緒に楽しく盛り上げていこうね、という思いがある反面、やはり保育士の処遇に目を向けざるを得ない状況も多々生じています。

保育士というのは、若い人が子供と触れ合う、育てる仕事として憧れであったりそういったイメージで就く職業ではあるものの、一般にはサービス残業とみなされること、過剰なストレスであったり、心無い父母の言葉に神経をすり減らしつつも、給与面では優遇されていない実情があります。

子供手当などの増額を政府が言っていたりしますが、子供に目線を向けるだけではなく、子供を支えている教職員の処遇を良くしていかないと若い人が継続してその職に着いてくれなくなり、将来的には次世代を育てる機能が失われつつあるのではないかとも危惧しています。

 

こども誰でも通園制度といったものの整備もされていますが、これはあくまでも親の目線のようで、「子供を預けやすい」といった目線でしかないという批判もあります。確かに保育は親の仕事継続といった目線もありますが、制度を拡大解釈すれば、親がどこかに遊びに行くために子供を一時的に知らない保育園に預ける、といったことになりますが、それは子供にどういった影響を与えるのかの議論が足りないようです。

自身が小さいとき、それが祖父母の家であっても見知らぬ土地である感じがありました。知らない保育園に預けられるというのは未知の世界にいきなり放り込まれるようなものですので、子供にとっては相当なストレスでしょう。

通っている保育園は一時保育といって、決まった保育園だが、一時的に預かってくれるという制度に力を入れています。見知った友達、見知った保育士、安心できる環境が保育の要であるとのことです。

こうした環境を維持していくのにも、やはり子供に関わる職業の処遇については改善をしていってほしいなと思っています。

 

自分の子供が健康に、幸せに育ち、またそれが継続的に発揮されるために何ができるのか、20年後、30年後の社会を支える世代への投資だと思うので、この辺を社会がなんとかしてほしいなとも思いますが、できることは少ないですね。少ないから諦めるのもまた違うので、小さくてもできることをやっていこうと思いました。

 


お風呂の温度

2024-05-25 02:26:53 | その他雑記

お風呂のリフォームをした。浴室は新築以来20年ぶりの新品にリニューアル。

古いお風呂は解体のときに気がついたが、あまり断熱材が使われていなかった。新しい浴槽は発泡材で囲まれておりかなり保温性が良さそうである。

以前思い立って、グラフテックの10chデータロガーをヤフオクでポチっていたので、お湯の温度を計測してみた。

しかし、測定したのは新しい浴槽のみで、古い浴槽のデータはない。

 

湯張り量は160Lで、縦軸に湯の温度、横軸に保温を止めてからの時間をプロット。データは10秒ごとに取得し、翌日のお風呂の準備までの約20時間のデータを取得した。気温は約22℃であった。お風呂の換気は実施している。

なにかの間違いかと思ったが、20時間経過しても35℃程であった。前の浴槽なら確実に常温になっていた。いや保温を切手から数時間で浴槽のしたは冷えていた。

もしかしたら対流が止まっているだけで、下の方は冷えているだろうと思って保温7時間くらい(翌朝)で浴槽をかき混ぜたが、温度は変わらなかった。

表面積はなんとも言えないが、160kgの水は160E3[g]×4.2[J/K/g]=6.72E5[J/K]の熱容量を持つ。12時間で4℃、毎時1/3℃なので、一時間に失うエネルギーは224000[J]程。これは3600秒での出来事なので、放熱量にすると、62[W]ほどの放熱となる。

 

計算してみてわかったが60Wってどんなもんなんだろうか。裏を返すと、60Wのヒーターで温度を維持できるとも言えるので、結構な保温性なのではないだろうか。

 

測定:K熱電対(Aliexpressで買った)+グラフテック GL220


鉄の膨張

2024-05-22 23:16:52 | その他雑記

鉄鋼、特に高炭素の鋼にはちょっと面白い特性がある。

焼入れ焼戻しをした鋼がゆっくりと膨張してくるのである。

具体的な鋼材を上げると、SUJ2やSK、SKSやSKDなどで、焼入れした状態で残留オーステナイトが存在する場合にこの膨張が生じる。

オーステナイトは面心立法(FCC)なので、密度が高い。対して焼入れしたマルテンサイトやフェライトパーライトは体心立法(BCC)なのでやや密度が低い。

材料を焼入れするとオーステナイトからマルテンサイトに変態するが、炭素量が多いとマルテンサイト変態終了温度が常温以下になるので、水焼入れなどではマルテンサイト変態が完了せず、オーステナイト相のまま残留するものがいる。

この残留オーステナイトは密度がやや高いのだが、常温では不安定なので、段々とマルテンサイトに分解していく。このときに密度低下が生じるため、体積ば膨張する。

硬い材料としては、物差しや直角定規など摩擦に耐えて長期間の耐久性がほしいものに工具鋼などが使われるが、この残留オーステナイトをうまく処理しないと寸法安定性が悪く、長期の精度が担保できないという問題がある。

先人はこれを解決する方法を考えており、常温以下まで冷やすことで残留オーステナイトをマルテンサイト変態させる、サブゼロ処理というものを考えた。

 

高炭素の鋼の熱処理で特に高精度が要求されるものについては、サブゼロ処理を入れるなどして寸法安定性を担保されたし。


超硬合金

2024-04-20 00:59:51 | その他雑記

超高合金というものがある。一般にはタングステンカーバイドの焼結体を指す。

コバルトをバインダー(粒子を接着させる接着剤)としたものが一般的で、通常はこれらを超高とよび、現代の切削を支えている。

コバルトレスと言っているものはニッケルでつないでいるものもある。

 

さて、合金といっているが、実際には炭化物であるため、合金というにはやや違和感がある。タングステンカーバイドはそのカーバイドの状態がとても硬く安定な状態であるため、温度が上がっても鉄鋼のように焼戻しされることもない。これが加工のツールとしてとても良い特性を持っている。

良いことばかりじゃなくて、加工が大変なので塊からの製造ではなく、粉末冶金をつかっての製造になる。タングステンカーバイドの粒子とコバルトを混ぜて、プレスして整形し、焼結する。そのごダイヤモンド砥石で仕上げて出来上がり。

 

この合金ができるまでは、ハイスと呼ばれる高速度鋼が一般的だったと思う。コバルトハイスなどなど。これらはタングステン、ニオブ、バナジウム、コバルト、モリブデンなど炭化物を作って固くなる元素を添加した鋼材で、材料内部にカーバイドを晶出するためにその特徴(温度が上がっても軟化しにくい=高速度加工ができる)を持っている。マルテンサイトで硬いものは400℃程度で柔らかくなるのであるが、カーバイドは上にも書いたが安定な硬質物質なので熱に強くなる。

たぶん、上のカーバイドだけ集めて作れないか?というところから超高合金の開発が始まって現在はタングステン・カーバイドがその殆どを締めているのだろうなと思っている。

 

温度が上がっても材料が耐えるので、潤滑レス(クーラントレス)での切削なども可能になる。むしろハイスの時代には発熱が問題だったが、高速度で加工することで、加工場所の鉄鋼温度が400℃、500℃、600℃、などと上がっていくと鉄鋼の強度がかなり低下するので、むしろ加工しやすくなるメリットが出てくる。切り屑が青かったりするのは加工場所で一瞬でブルーになるまでの温度が発生している状態の証左である。

 

眠くなってきた