宇宙論、ブラックホール、ダークマター、ホーキング放射、相対論

ブラックホール、ダークマター、ホーキング放射、相対論 etc etc

ダークマター・ホーキングさんが考えたこと・23・BH(ブラックホール)は消滅可能なのか?

2019-05-04 14:10:15 | 日記

いままで検討してきた事を振り返りますと、「BH(ブラックホール)は消滅可能なのか?」という疑問が湧いてきます。
「消滅したのか?」という現象論ではありません。
「理論的に消滅可能なのか?」という問いになります。

多くの皆さんが参照されているBHの寿命式、あの式でBHの質量Mがゼロになった時点をもって「BHは消滅した」とされています。
しかしながら、あの式のMの値が正確にゼロになるという事は保証されておらず、ゼロになる為には基本的に以下の2つの事を前提(暗黙の了解)とする必要があります。
(より詳細なBHのホーキング放射モデルによれば、質量がゼロになる時点までかかる時間は標準的な計算方法に対してかなり伸びる事になりますが、今はその事は問いません。)

1、BHを消滅させることになる、一番最後にBHに飛び込んだ仮想粒子が持っていた運動量は保存されなくても良い。
つまり運動量の保存則は破る事が可能である。
2、一番最後にBHに飛び込みBHの質量をゼロにできるエネルギーをBHに持ち込む仮想粒子をそのタイミングで真空が生み出す事が可能である。

1番目の「運動量保存則を破る事が可能である」という主張は、当方にとっては到底認められません。
実粒子が対消滅する際にも運動量保存則とエネルギー保存則は守られていると認識しています。
そうであれば、「いやBHが消滅する方が運動量保存則よりもより基本的な法則だ」などという主張は「とんでも理論」でありましょう。

2番目の「BHの質量をちょうど消し去るような仮想粒子を真空がそのタイミングで生み出せる」などと言う話は、当方にとっては「ファンタジー」であります。
BHが示すその時のホーキング温度に応じた黒体スペクトル分布のなかから、その分布形状に従いつつ、最終的にはランダムに「次に発生する仮想粒子が決まる」あるいは「次にBHに到達する仮想粒子が決まる」と言うのがホーキング放射のメカニズムでありましょう。
そうであれば、そうそう都合よく「ちょうどBHの質量をゼロにできる仮想粒子が発生しました」などという話は到底信じられないのであります。


さて、実粒子がその反粒子と出会って対消滅する。
物質という姿から光という姿に変わる。
そうであればまたBHもその姿を光に変えてもいいのではないか?

まあそういう発想の中での「BHは消滅できる」というお話でありましょう。
但し、そのお話が可能となる為には「反BHの存在が必要」です。(注1)
BHと反BHが出会って、対消滅して光になりました。
そうであるならば、どこにも問題はありません。

しかしながら、「反BH」などという存在は聞いたことがありません。
そうして、もし「反BH」という存在があったとしても、BHの質量については個々のBHが誕生した時点から現在に至るまでに過ごしてきた個々のBHの歴史に依存し、それはユニークであって、けっして同じ質量のBHというものはこの世界には存在しないでありましょう。
2つのBHがたまたま同じ質量で生まれてきたとしても、一回、それぞれがホーキング放射を出せばそれで質量は変化し、また運動量も変化します。
そうでありますから、「同じ質量のBHを2つそろえる」などという事は到底ありえない話となります。(注2)

さて、そういうわけで「反BHがあった」としても目の前のBHにちょうど一致して対消滅可能な反BHを探し出す事は不可能でしょう。

さあそうなりますと、「BHという存在は一度この世界に生まれてきたら合体する事は可能ですが、消滅する事は不可能である」という「BH保存則」が見えてきます。

そうして、そのように宇宙はできているのか、それともBHは消滅できる存在なのか、その判断は読者の皆さんにお任せしたいと思います。

注1:反BH
BHが中性子星の重力崩壊でできるなら、反BHは反中性子星の重力崩壊で出来るのでは、と思って調べてみました。
中性子と反中性子はスピン1/2で質量は同じ、但し磁気モーメントが反対で電荷はもちろんゼロ、と言うものです。<--リンク

実粒子の段階ではこの2つの粒子は出会う事ができれば対消滅して光に変わります。
さてそれで、問題は反中性子星が重力崩壊して出来たBHは反BHとなるかどうかですね。

それで、残念な事には「BHの3本の毛の定理」によってBH=反BHになってしまう様です。
『ブラックホールを特徴づける物理量としては質量、角運動量、電荷の 3 つしかない。
これを「ブラックホールに毛が三本」という。』<--リンク

つまり目の前のBHが中性子起因のBHなのか反中性子起因のBHなのか見分けがつかない、という事になります。
さてそうなりますと、この2つのBHが出会いましても対消滅は起こらず、BH合体現象が観察されるのみである、という結果になります。

注2
通常は「BHは毛が3本」だから「BHには特徴が少なく見分けがつかない」と言われています。
しかしながら、事実はそれとはまったく逆であります。

BHは毛が3本でそのうちの1本が質量です。
そうしてこの「質量という毛」が同じ値を示すBHはこの世界には無いでしょう。

つまり、それぞれのBHは大きさに関係なくユニークである、識別が可能なのであります。
この事は我々、形あるものを作りあげている物質粒子群と好対照の事になります。

物質粒子は種類が同じであれば、相互作用して別れた後にどちらがどちらの粒子であったかをいう事はできません。
そうであれば、見知らぬところから飛んできた自分と同じ種族の反粒子と対消滅して超える事が出来るのであります。

別の言い方をしますと、物質粒子には固有の世界線は無いかのようです。
他方でBHは自分自身の固有の歴史を、固有の世界線を持っている様に見えます。
それゆえに、またそうしてこれは好みの問題ですが「この世に存在する全てのBHに、その大小にかかわらず名前を与えることが出来る」という事でもあります。

「名前が違う2つのBHが合体したらどう呼ぶのか?」ですって。
「太郎」BHと「花子」BHが合体したら、もちろんそのBHは「太郎・花子」と呼ばれる事になります。

ちなみに今回撮影に成功したおとめ座にある銀河「M87」にあるブラックホールの名前は不明ですが、天の川銀河の中心にあるブラックホールは「いて座A*(エースター)」という立派な名前をもっております。
そうして、ここでの提案は「全てのBHは名前をもつ権利がある!」と言うものになります。

追伸
以上の様に、ホーキング放射でBHは質量を順次減らしていき、そうして「BH消滅に対して王手はかかった」と思われる状況までは行きますが、最後の一歩が「詰み」にはなっていなかった、という事になります。

従来の標準的な寿命式はエネルギー保存則のみを考慮して作られており、従って運動量の保存は考慮外になっています。(注3)
そうして、考慮されているエネルギー保存則も、最後の一歩が「実に人為的に操作される必要があるもの」になってしまっています。

さてそうなりますと、「それでは消滅できないがホーキング放射で質量を減らしたBHは今、どうなっているの?」という疑問が湧いてきます。

そうして注意していただきたいのは、「ホライズン直径がLpに到達した所で一旦、ホーキング放射は止まる」という当方の主張とは全く別の次元の、より一般的な内容でここまでの議論が成立している、という事であります。

注3
BHの寿命式はこんな恰好をしています。

M^3=M0^3-(h*C^4/(5120*Pi*G^2))*t <--リンク
M0 はt = 0 のときのBHの質量であり、ブラックホールが蒸発するまでの時間はM = 0 として上の式からtを計算して求めます。
hは生プランク定数を2*Piで割ったもの、Gは重力定数、Cは光速です。

この式からわかる様に、BHの運動量Pは考量されておらず、そうして又暗黙のうちに「BHの質量Mはホーキング放射でゼロに出来るもの」とされています。


・ダークマター・ホーキングさんが考えたこと 一覧<--リンク


http://archive.fo/2y3TU
http://archive.fo/yiouV
http://archive.fo/5fxjO

コメント

ダークマター・ホーキングさんが考えたこと・21・BH(ブラックホール)が質量を減らす方法(2)

2019-05-01 12:03:28 | 日記
さて前回検討したように「どのような質量のBHに対してであれ、ホライズンに向かって自由落下する物質は光速の75%でホライズンに到達する」のであります。
ここで注目すべきは「この話はBHの持つ質量には無関係である」という事です。

太陽質量の10倍程度の質量のBHであれ、1グラム未満のマイクロBHであれ、光速の75%までの加速は同様におきる現象であります。
但し、この2つのBHの重力圏の大きさはBHが持つ質量の大きさに応じてまるで「桁違い」になっています。
そうしてまたこのBHがもつホライズン半径も「桁違い」です。

そうでありますから、大きな質量のBHには宇宙に存在する大抵の物質を飲み込む事、その物質を光速の75%まで加速する事はできますが、他方でマイクロBHはそのような芸当はできません。
せいぜいが「止まっているニュートリノを自由落下させる事が出来る」、まあそのあたりの事しかできません。
そうして我々はまだマイクロBHだと思われるダークマターを補足する事も、いつも光速で走っているニュートリノを止める事も出来てはいません。


さてそのようなマイクロBHではありますが、その生まれは原始BHであろうと、インフレーション直後に誕生したものであろうと推測されています。
「元素合成 ・・・物質の起源について」によれば「インフレーション終了後、宇宙の物質要素はクォークグルーオンプラズマ、と呼ばれる状態で存在していました。」とのこと。<--リンク(Or http://archive.fo/ECZUC
そうして、この「クォークグルーオンプラズマ」と呼ばれる状態が、現在、我々が想定しうる範囲内では「物質がとりうる最も密度が高い状態」の様です。

その状態でのクォークグルーオンプラズマの密度をPρとします。
一方でおなじみのホライズン半径RsはRs=2*G*M/C^2.
ホライズン半径の球の中に質量Mを構成する物質が一様に詰まった、としますとその密度ρは
ρ=3*C^6/(32*Pi*G^3*M^2)

ここでMをビックバン後の宇宙の全質量としますと
仮にPρ>ρになっていたとすると、インフレーション後に「この世にあらわれた宇宙はすぐにBHになる」という事になります。
つまり「宇宙は誕生してはすぐに姿を消した」とそういう事になります。
そうして、実際はそうなってはいないのでありますからPρ<ρであったと、そういう事が分かります。

このままでは宇宙は誕生できましたが、注目している原始BHが生まれてきません。
そこで量子論がらみの「質量密度の揺らぎ」、そうしてまた「空間スケールの揺らぎ」の登場となる訳です。

なるほど大局的にはPρ<ρではありましたが、部分的にはPρ>ρと言う様になっていた所があってもおかしくは無い、そのように主張する訳です。
そうなっていれば、その部分はBHとなる事が出来ます。
こうして質量が1グラム程度のマイクロBHがめでたく誕生する、と言うシナリオが作れます。

「原始ブラックホールと重力波」<--リンク

・・・以上は前回の補足説明で、少し遅くなりましたが今回のテーマについてはこれ以降になります。

前回の計算結果では「質量mの物質がBHに自由落下しその質量を3/2*m分だけ増加させる」というものでした。
これは落下するBHの質量MがM>>mである場合にはほぼ成立しそうですが、M≒mの場合にはどうであるのか、調べてみなくてはいけません。
と言いますのも、mの運動量PがBHに吸収される、そうなりますとmを吸収したあとのBHは運動量Pを受けて動き出す、という事になります。
そうなりますとBHの運動エネルギー分だけBHの質量増加分が削られる、そういう話になりそうです。

以上の話は「ホーキング放射でBHが消えてしまう」と論じておられる方々が見逃している事にも関係しています。
BHを蒸発させることになる、最後にこのBHに飛び込んだ仮想粒子が持っていた運動量はどこに行ったのか、「マイクロBHは蒸発してしまった」と論じておられる方々は運動量保存則を忘れておられる様に見受けられます。

そうでありますからここは前回取り上げた「ホーキングさんが考えたこと・16」での例、プランクスケールに到達したBHが出す事になるホーキング放射の例に戻ってこの事を検討する事としましょう。

さてそれで2.176E-08(Kg)=(0.00000002176Kg)のBHが⊿E=2.196E+08(J)のエネルギーのニュートリノを放出します。
それはつまりこのBHに進行方向は放出されるニュートリノとは正反対ですが、同様のエネルギーをもったニュートリノがBHに飛び込む、という事でもあります。
その結果としてはこのBHは真空との取引により最終的には⊿E=2.196E+08(J)のエネルギーを支払い、放出したニュートリノと反対方向にそのニュートリノが持って行ったのと同じ値の運動量Pを受け取る事になる、そういう話でした。(注1)
このあたりの取引詳細は「ホーキングさんが考えたこと・4」を参照願います。<--リンク

以下は計算になります。
まずは「仮想粒子が対生成した発生点を原点とした座標系で見た時にBHは静止していた」と仮定します。
そしてその時にこのBHが持っていたエネルギーをEとします。
そうして、飛び込んできたニュートリノが持っていた運動量をPとします。
そしてその値は前回計算結果よりP=0.732488でした。
この時にこのBHが満たす式は次のようになります。

(E-⊿E)^2=P^2*C^2+M^2*C^4
この式はBHは⊿Eのエネルギーを支払い、運動量Pを受け取る事を示しています。
ここでMはニュートリノが飛び込んだ後のBHの静止質量を表します。

Eはニュートリノが飛び込む前のBHの質量2.176E-08(Kg)にC^2を掛けて求めます。
E=(2.176E-08)*(2.998*10^8)^2=1955800000(J)

以上を代入して整理すると
M=sqrt(((E-⊿E)^2-P^2*C^2)/C^4)=1.916E-08(Kg)
この結果は「ホーキングさんが考えたこと・16」での計算値1.932E-08(Kg)よりも小さく、その分が実はBHの運動エネルギーとして使われたという事になります。

次にP=M*V/sqrt(1-V^2/C^2)よりニュートリノ吸収により発生したBHの移動速度Vを求めます。
その結果はWolframによれば
V=3.7923E+7=0.126*C
従ってこのBHは光速の13%程度で自分がホーキング放射したニュートリノとは反対方向に走り出す事が分かります。

こうしてBHの質量Mが大きければ、ホーキング放射を出したことによる反作用は考慮せずにBH質量はホーキング放射されたエネルギー分だけ減る、としても間違いはなさそうですが、マイクロBHのレベル、プランクスケールのBHになった場合はそのようには無視できず、反作用によるBHの運動エネルギーの増加分を考慮しないとBHの質量減少分が計算できない、という事が分かります。

さらには、このようにしてホーキング放射を出したことによる反作用を受け取る必要のあるBHがこのホーキング放射プロセスで「蒸発した」とするならば、この相互作用での運動量保存則が満たされる事はない、という事もまた同時にわかるのでありました。

(注1)
このBHはまずは仮想粒子の飛び込みによって⊿Eのエネルギーとホーキング放射したニュートリノと逆方向にPという運動量を受け取ります。
ここで、従来の考え方ではこの受け取ったPの事は忘れてしまい、受け取った⊿EのエネルギーがそのままBHの質量に付与される、としていました。

しかしながら、事実はといえば、運動量Pを同時に受け取ったBHはその方向に運動し始め、その結果は運動エネルギーΔEkを持つことになります。
そうなりますと、⊿EというエネルギーがすべてBHの質量に変わる、ということにはならず、(⊿EーΔEk)というエネルギーがBHの質量に転化・付与される事になります。

その後BHは真空に対して2*⊿Eという支払いをすることになり、従ってBHのエネルギー収支は最終的には⊿E分だけのマイナスとなります。

しかしながらBHの質量は、といいますと仮想粒子の飛込みによって得られた分が(⊿EーΔEk)であり、真空に支払った分がー2*⊿Eですからこの二つを合計した値、ー⊿EーΔEkがBHの質量になった、つまり結果的には(⊿E+ΔEk)というエネルギーが質量から抜けた、という計算になる訳であります。


・ダークマター・ホーキングさんが考えたこと 一覧<--リンク


http://archive.fo/51ZAJ
コメント