Masaca's Blog 2

独り言・日記・愚痴・戯言・備忘録・・・。なんとでもお呼び下され(笑)。

Papers of Note from In Sequence, Mar 2009 (10)

2009-04-22 21:00:45 | Science News
  • Genome Sequence of the Pathogenic Intestinal Spirochete Brachyspira hyodysenteriae Reveals Adaptations to Its Lifestyle in the Porcine Large Intestine.
    Matthew I. Bellgard, Phatthanaphong Wanchanthuek, Tom La, Karon Ryan, Paula Moolhuijzen, Zayed Albertyn, Babak Shaban, Yair Motro, David S. Dunn, David Schibeci, Adam Hunter, Roberto Barrero, Nyree D. Phillips, David J. Hampson.
    PLoS ONE 4, e4641 (2009) | doi:10.1371/journal.pone.0004641 | PMID:19262690
    Brachyspira hyodysenteriae is an anaerobic intestinal spirochete that colonizes the large intestine of pigs and causes swine dysentery, a disease of significant economic importance. The genome sequence of B. hyodysenteriae strain WA1 was determined, making it the first representative of the genus Brachyspira to be sequenced, and the seventeenth spirochete genome to be reported. The genome consisted of a circular 3,000,694 base pair (bp) chromosome, and a 35,940 bp circular plasmid that has not previously been described. The spirochete had 2,122 protein-coding sequences. Of the predicted proteins, more had similarities to proteins of the enteric Escherichia coli and Clostridium species than they did to proteins of other spirochetes. Many of these genes were associated with transport and metabolism, and they may have been gradually acquired through horizontal gene transfer in the environment of the large intestine. A reconstruction of central metabolic pathways identified a complete set of coding sequences for glycolysis, gluconeogenesis, a non-oxidative pentose phosphate pathway, nucleotide metabolism, lipooligosaccharide biosynthesis, and a respiratory electron transport chain. A notable finding was the presence on the plasmid of the genes involved in rhamnose biosynthesis. Potential virulence genes included those for 15 proteases and six hemolysins. Other adaptations to an enteric lifestyle included the presence of large numbers of genes associated with chemotaxis and motility. B. hyodysenteriae has diverged from other spirochetes in the process of accommodating to its habitat in the porcine large intestine.

  • Inferring clonal expansion and cancer stem cell dynamics from DNA methylation patterns in colorectal cancers.
    Kimberly D. Siegmund, Paul Marjoram, Yen-Jung Woo, Simon Tavaré and Darryl Shibata.
    PNAS 106, 4828-4833 (2009) | 10.1073/pnas.0810276106 | PMID:19261858
    Cancers are clonal expansions, but how a single, transformed human cell grows into a billion-cell tumor is uncertain because serial observations are impractical. Potentially, this history is surreptitiously recorded within genomes that become increasingly numerous, polymorphic, and physically separated after transformation. To correlate physical with epigenetic pairwise distances, small 2,000- to 10,000-cell gland fragments were sampled from left and right sides of 12 primary colorectal cancers, and passenger methylation at 2 CpG-rich regions was measured by bisulfite sequencing. Methylation patterns were polymorphic but differences were similar between different parts of the same tumor, consistent with relatively isotropic or "flat" clonal expansions that could be simulated by rapid initial population expansions. Methylation patterns were too diverse to be consistent with very rare cancer stem cells but were more consistent with multiple (≈4 to 1,000) long-lived cancer stem cell lineages per cancer gland. Our study illustrates the potential to reconstruct the unperturbed biology of human cancers from epigenetic passenger variations in their present-day genomes.

  • Genome Sequence of the Lager Brewing Yeast, an Interspecies Hybrid.
    Yoshihiro Nakao, Takeshi Kanamori, Takehiko Itoh, Yukiko Kodama, Sandra Rainieri, Norihisa Nakamura, Tomoko Shimonaga, Masahira Hattori, Toshihiko Ashikari.
    DNA Research 16, 115-129 (2009) | doi:10.1093/dnares/dsp003 | PMID:19261625
    This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production.

  • Chemically modified primers for improved multiplex polymerase chain reaction.
    Jonathan Shum, Natasha Paul.
    Analytical Biochemistry 388, 266-272 (2009) | doi:10.1016/j.ab.2009.02.033 | PMID:19258004
    Multiplex polymerase chain reaction (PCR), the amplification of multiple targets in a single reaction, presents a new set of challenges that further complicate more traditional PCR setups. These complications include a greater probability for nonspecific amplicon formation and for imbalanced amplification of different targets, each of which can compromise quantification and detection of multiple targets. Despite these difficulties, multiplex PCR is frequently used in applications such as pathogen detection, RNA quantification, mutation analysis, and (recently) next generation DNA sequencing. Here we investigated the utility of primers with one or two thermolabile 4-oxo-1-pentyl phosphotriester modifications in improving multiplex PCR performance. Initial endpoint and real-time analyses revealed a decrease in off-target amplification and a subsequent increase in amplicon yield. Furthermore, the use of modified primers in multiplex setups revealed a greater limit of detection and more uniform amplification of each target as compared with unmodified primers. Overall, the thermolabile modified primers present a novel and exciting avenue for improving multiplex PCR performance.

  • Meta-analysis of small RNA-sequencing errors reveals ubiquitous post-transcriptional RNA modifications.
    H. Alexander Ebhardt, Herbert H. Tsang, Denny C. Dai, Yifeng Liu, Babak Bostan, Richard P. Fahlman.
    Nucleic Acids Research, Advance Access | doi:10.1093/nar/gkp093 | PMID:19255090
    Recent advances in DNA-sequencing technology have made it possible to obtain large datasets of small RNA sequences. Here we demonstrate that not all non-perfectly matched small RNA sequences are simple technological sequencing errors, but many hold valuable biological information. Analysis of three small RNA datasets originating from Oryza sativa and Arabidopsis thaliana small RNA-sequencing projects demonstrates that many single nucleotide substitution errors overlap when aligning homologous non-identical small RNA sequences. Investigating the sites and identities of substitution errors reveal that many potentially originate as a result of post-transcriptional modifications or RNA editing. Modifications include N1-methyl modified purine nucleotides in tRNA, potential deamination or base substitutions in micro RNAs, 3' micro RNA uridine extensions and 5' micro RNA deletions. Additionally, further analysis of large sequencing datasets reveal that the combined effects of 5' deletions and 3' uridine extensions can alter the specificity by which micro RNAs associate with different Argonaute proteins. Hence, we demonstrate that not all sequencing errors in small RNA datasets are technical artifacts, but that these actually often reveal valuable biological insights to the sites of post-transcriptional RNA modifications.


  • 最新の画像もっと見る