ポイントは
適切な超音波(周波数・出力)と液循環のバランスです
液循環の適切な流量・流速と超音波キャビテーションの設定により
超音波による音響流・加速度効果の状態をコントロールします。
マイクロバブルの効果で
均一に広がる超音波の伝搬状態を利用します。
液循環により、以下の自動対応が実現しています。
溶存気体は、水槽内に分布を発生させ
レンズ効果・・・の組み合わせにより、超音波が減衰します。
適切な液循環による効率の良い超音波照射時は、
大量の空気・・が水槽内に取り入れられても
大きな気泡となって、水槽の液面から出ていきます。
しかし、超音波照射を行っていない状態で
オーバーフロー・・により
液面から空気を取り込み続けると、超音波は大きく減衰します。
この空気を取り入れる操作は必要です
多数の研究報告・・がありますが
液循環の無い水槽で、長時間超音波照射を行い続け
溶存気体の濃度が低下すると
音圧も低下して、キャビテーションの効果も小さくなります。
(説明としては、キャビテーション核の必要性が空気を入れる理由です
液面が脱脂油や洗剤の泡・・・で覆われた場合も空気が遮断され
同様な現象になります)
さらに、
超音波照射により、脱気は行われ
溶存気体の濃度は低下して、分布が発生します
単純な液循環では、この濃度分布は解消できません。
この濃度分布の解決がマイクロバブルの効果です。
脱気・マイクロバブル発生液循環が有効な理由です。
注:
オリジナル装置(超音波測定解析システム:超音波テスター)による
音圧測定解析を行い
効果の確認を行っています。
小型ポンプを利用した「流水式超音波制御技術」 ultrasonic-labo
「超音波制御技術」を開発
間接容器と定在波による音響流とキャビテーションのコントロール ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
超音波システム研究所は、
超音波(定在波)の制御技術を応用して、
間接容器を利用した、新しい超音波制御技術を開発しました。
今回開発した技術は、
超音波の定在波を利用して、
間接容器の音響特性と組み合わせることで、
超音波機器の発振周波数とは異なる、
幅広い超音波伝搬周波数の特性を利用可能にした技術です。
特に、容器の音響特性を考慮することで
音響流による効果をコントロール可能にしました。
具体例
40kHzの超音波振動子とガラス容器を使用して、
100-200kHzの超音波洗浄
40kHzの超音波振動子とステンレス容器を使用して、
600-1200kHzの超音波分散
・・・の実施例があります。
なお、超音波システム研究所の
「超音波機器の評価技術」により、
具体的な効果を<数値化・グラフ化>することで
間接容器(各種治工具)の音響特性・・・を確認しています。
参考動画
<ステンレス容器>
<ガラス容器>
<組み合わせ>
ノウハウ
1:超音波とマイクロバブルによる間接容器の表面改質
2:間接容器の設定(設置・容器内の液体設定・・)
技術提供させていただきます
興味のある方は、メールでお問い合わせください
超音波実験写真 Ultrasonic experiment photo 超音波美顔器
超音波実験写真 Ultrasonic experiment photo
超音波洗浄器実験 Ultrasonic experiment (超音波システム研究所 ultrasonic-labo)
超音波実験 Ultrasonic experiment ultrasonic-labo
超音波洗浄器(26145円) Ultrasonic Cleaner