超音波実験 Ultrasonic experiment
超音波洗浄システム(制御BOX) ultrasonic-labo
超音波システム研究所(所在地:東京都八王子市)は、
シャノンのジャグリング定理を応用した「超音波制御」方法を開発し
コンサルティング提案・実施対応を行っています。
超音波照射による現象を 安定して効率よく利用するためには
超音波発振機や振動子以外の条件に関する 検討や開発も必要です
水槽や液循環・・・の影響も大きいのですが
現在使用中の超音波を効率用利用するための
単純ですが大きな改善が可能な
アイデアと方法を紹介します
( 具体例や実績は多数あります
20cc-2500リットルまで対応実績があります )
この制御は簡単で、非常に効率が高いので是非利用してください
省エネルギーにもなります、
広く普及させたいと考えています 特許申請は行いません
(インターネットで公開し類似の特許が登録されないようにしています)
詳細については「 超音波システム研究所 」にお問い合わせください
単純ですが、個別の要因(水槽、伝搬対象物、・・)により適切な設定が必要です
<制御について>
各種データの時系列変化の様子を解析・評価して、
時間で移動するボールのジャグリング状態に相当する
超音波伝搬現象の「サイクル」と、「影響範囲」を見つけます
この関係性からボールN個のジャグリング状態を設定して制御を行うと、
システムの状態に適した制御となり、効率の高い超音波システムとなります
<< シャノンのジャグリング定理の応用 >>
注:JUGGLING THEOREM proposed by Claude E. Shannon
シャノンのジャグリング定理
( F + D ) * H = ( V + D ) * N
F : ボールの滞空時間(Flight time)
D : 手中にある時間(Dwelling time)
H : 手の数(Hands)
V : 手が空っぽの時間(Vacant time)
N : ボールの数(Number of balls)
<< 応用 >>
F : 超音波の発振・出力時間
D : 循環ポンプの運転時間
H : 基本サイクル(キャビテーション・加速度のピークの発生する)
V : 脱気(マイクロバブル発生液循環)装置の運転時間
N : 超音波(発振)周波数の異なる振動子の数
ポイント(ノウハウ)は、非線形現象の発生状態を
対象物による相互作用を考慮した
測定解析評価に基づいて、コントロールすることです。
超音波実験 Ultrasonic experiment <超音波システム研究所 ultrasonic-labo>
超音波システム研究所は、
目的に合わせた効果的な超音波のダイナミック制御を実現するために、
<脱気・マイクロバブル発生液循環システム>を利用しています。
超音波液循環技術の説明
1)超音波専用水槽(オリジナル製造方法)を使用しています
2)水槽の設置は
1:専用部材を使用
2:固有振動と超音波周波数・出力の最適化を行っています
3)超音波振動子は専用部材を利用して設置しています
(専用部材により、定在波、キャビテーション、音響流の
利用状態を制限できます)
4)脱気・マイクロバブル発生装置を使用します
(標準的な、溶存酸素濃度は5-6mg/l)
5)水槽と超音波振動子は表面改質を行っています
上記の設定とマイクロバブルの拡散性により
均一な洗浄液の状態が実現します
均一な液中を超音波が伝搬することで
安定した超音波の状態が発生します
この状態から
目的の超音波の効果(伝搬状態)を実現するために
液循環制御を行います
(水槽内全体に均一な音圧分布を実現して、
超音波、脱気装置、液循環ポンプ、・・の運転制御がノウハウです)
目的の超音波状態確認は音圧測定解析(超音波テスター)で行います
ポイントは
適切な超音波(周波数・出力)と液循環のバランスです
液循環の適切な流量・流速と超音波キャビテーションの設定により
超音波による音響流・加速度効果の状態をコントロールします
脱気・マイクロバブルの効果で
均一に広がる超音波の伝搬状態を利用します
液循環により、以下の自動対応が実現しています
溶存気体は、水槽内に分布を発生させ
レンズ効果・・・の組み合わせにより、超音波が減衰します
もうひとつは
適切な液循環による効率の良い超音波照射時は、
大量の空気・・が水槽内に取り入れられても
大きな気泡となって、水槽の液面から出ていきます
しかし、超音波照射を行っていない状態で
オーバーフロー・・により
液面から空気を取り込み続けると、超音波は大きく減衰します。
この空気を入れる操作は必要です
多数の研究報告・・がありますが
液循環の無い水槽で、長時間超音波照射を行い続け
溶存気体の濃度が低下すると
音圧も低下して、キャビテーションの効果も小さくなります
(説明としては、キャビテーション核の必要性が空気を入れる理由です
液面が脱脂油や洗剤の泡・・・で覆われた場合も空気が遮断され
同様な現象になります)
さらに、
超音波照射により、脱気は行われ
溶存気体の濃度は低下して、分布が発生します
単純な液循環では、この濃度分布は解消できません
この濃度分布の解決がマイクロバブルの効果です
脱気・マイクロバブル発生液循環が有効な理由です
注:
オリジナル装置(超音波測定解析システム:超音波テスター)による
音圧測定解析を行い
効果の確認を行っています
この動画は
マイクロバブル発生液循環装置による
超音波のダイナミック制御を実現させています
nano tech 超音波を利用した、「ナノテクノロジー」の研究・開発装置
超音波システム研究所::超音波伝搬状態の測定・解析
バイスペクトルは
以下のように
周波数f1、f 2、f1 + f 2のスペクトルの積で表すことができる。
B( f1 , f 2 ) = X( f1 )Y( f 2 )Z( f1 + f 2 )
主要周波数がf1であるとき、
f1 + f1 = f 2、f1 + f 2 = f3で表される
f 2、f3という周波数成分が存在すれば
バイスペクトルは値をもつ。
これは主要周波数f1の
整数倍の周波数成分を持つことと同等であるので、
バイスペクトルを評価することにより、
高調波の存在を評価できる。
メガヘルツの超音波洗浄システム ultrasonic wave
超音波制御技術に関する「参考書籍」 Reference books
<<参考書籍>>
1:解析
1)叩いて超音波で見る―非線形効果を利用した計測
佐藤 拓宋 (著) 出版社: コロナ社 (1995/06)
2)電気系の確率と統計
佐藤 拓宋 (著) 出版社: 森北出版 (1971/01)
3)不規則信号論と動特性推定
宮川 洋 (著), 佐藤拓宋 (著), 茅 陽一 (著)
出版社: コロナ社 (1969)
4)赤池情報量規準AIC―モデリング・予測・知識発見
赤池 弘次 (著), 室田 一雄 (編さん), 土谷 隆 (編さん)
出版社: 共立出版 (2007/07)
5)ダイナミックシステムの統計的解析と制御
赤池 弘次 (著), 中川 東一郎 (著)
出版社: サイエンス社(1972)
2:シミュレーション
波動解析と境界要素法
福井 卓雄 小林 昭一 京都大学学術出版会 (2000/03)
3:弾性波動
「弾性波動論の基本 」 田治米 鏡二 (著) 槇書店 (1994/10)
「弾性波動論 」佐藤 泰夫 (著) 岩波書店 (1978/03)
4:流体力学
「内部流れ学と流体機械」 妹尾 泰利 (著) 養賢堂 (1973)
「流体力学 」日野 幹雄 (著) 朝倉書店 (1974/03)
「流体力学 」日野 幹雄 (著) 朝倉書店 (1992/12)
「噴流工学 」社河内敏彦(著) 森北出版(2004/03)
5:超音波
「やさしい超音波工学―拡がる新応用の開拓」
川端 昭 (編著), 高橋 貞行 (著) 一ノ瀬 昇 (著)
工業調査会 増補版 (1998/01)
上記を参考・ヒントにして
超音波伝播現象における
「音響流」を測定・利用する技術を研究しています。
<<超音波システム研究所>>