是永純弘「確率概念の本質と確率論主義批判」内海庫一郎編『社会科学のための統計学』評論社, 1973年
計量的手法をとる近代科学は確率論の数理を応用する。そのなかには, 統計値を含めて一団の数値(集合)が与えられれば, ただちにそこに大数法則があてはまるものと決めこみ, 確率論を適用し, 確率計算を行い, その結果によって一定の規則性の安定度を確率で表現する。確率論主義といわれるものが, これである。確率論主義の本質は, 筆者によれば, 自然および社会の諸現象に関する数値(観測値や統計値)の一団が与えられたとき, それらの研究対象を固有の研究方法で分析するのではなく, これらを抽象数の一団とみなし, そこに確率論を適用し, 分析することである。換言すれば, 自然科学, 社会科学を問わず, それらの固有の対象を明らかにするために不可欠な独自の研究方法にたよらず, 確率論だけで問題に接近しようとする姿勢が, これである。本稿の目的は, この確率論主義を批判的に検討することである。
筆者は問う。そもそも確率とは何なのか。それは物質の客観的な運動形態のいかなる側面を反映したものなのか。具体的な事実を特徴づけるために確率概念を適用したとき, それはいったいどのような実質的意味をもつのだろうか。
確率論がその理論的帰結として予定する「大数法則とは, ある統計値集団において特定の単一標識の特定の値があらわれる度数のその集団の大きさ(総度数)に対する比率, すなわち特定事象発現の相対素数が, 集団の大きさが大きくなる(数学的には無限となる)につれて, 一定の値(先験的確率に近づくことがほぼ確実(確率1)になることである」(p.90)。「相対度数」「先験的確率」「確からしさの程度をあらわす確率」という3つの概念がここでは重要である。
筆者は問題の所在を以上のように整理し, 次いで確率が事物の運動形態の一側面の反映であることを, たとえ部分的でも意識して確率を定義しようとした(1)古典的確率論と(2)頻度説的確率論をとりあげ, それらの意義を確認している。
古典的確率論は, われわれの経験に先立って事物の存在そのもののうちに, 一定の条件のもとにではあるが経験の結果としての一定の規則性という属性を認める。経験の背後に, 事物の存在が予定されている。問題は物自体の一属性が確率にあらわれるメカニズムに関して, 不完全な説明しかできていないことである。これに対して, 頻度説(R.v.ミーゼス)では, 確率は無規則な現象系列の中での特定事象の発現の相対頻度の極限値と定義され, 相対頻度の極限値が出現するメカニズムが客観的である。この頻度説の欠陥は, 経験がすべての大前提におかれ, そのような経験の結果が生ずることを経験以前の「物自体」の属性とされていないことである。
ミーゼスは物質の一属性が確率として発現するメカニズムを, 同一現象の繰り返し試行, あるいは同種の自然物の集団という二つの類型をもった客観的事実としてのコレクティフの性質に見出した。問題はその発現条件を事象の確率的性質の成立または存在の条件と同一視したことにあった。
以上の理解にたって, それでは先に述べた確率論主義はいかに克服されるべきなのだろうか。確率論主義が有している欠陥は, 確率論とその適用の結果が統計値集団にみとめられる安定的規則性の発現の強度を示すにすぎないにもかかわらず(なにゆえにこの集団がこの集団性をこの強度において示すかという原因機構の解明が次の研究段階である), その延長で既存の知識で対象の認識に到達しえないとなると, ただちに対象的真理, 絶対的真理が認識しえないとし(不可知論), 認識の相対性が一面的に強調されることにある(「相対主義」)。この弊を避けるには, 相対的真理の認識を徐々に高め, 全体として一歩一歩, 対象の絶対的真理に接近していく以外に方法はない。
筆者は最後に, 確率論的な認識論の不可知論的な相対主義は, 物理学の世界における古典物理学から量子力学への発展についての誤解に根拠があり, それが社会科学にもちこまれたとして, そうした物理学的世界観そのものを批判的に考察している。物理学でも, 確率概念が物理量のもつ客観的な意味をあきらかにする単なる指標とみなされず, 観測の誤差, 情報の不完全さといった認識の技術的限界が物理的認識の絶対的限界と解釈され, 確率論主義にたよることがあった。ハイゼンベルクの思考実験によって「証明」された「不確定性原理」がその一例であるという。この世界でも重要なのは, 確率概念の公理論的基礎づけや実証主義的道具化ではなく, この概念の客観性の解明である, という先見的見解の表明もある。筆者は, 社会科学もこの見解に学ぶべきだと説いている。
計量的手法をとる近代科学は確率論の数理を応用する。そのなかには, 統計値を含めて一団の数値(集合)が与えられれば, ただちにそこに大数法則があてはまるものと決めこみ, 確率論を適用し, 確率計算を行い, その結果によって一定の規則性の安定度を確率で表現する。確率論主義といわれるものが, これである。確率論主義の本質は, 筆者によれば, 自然および社会の諸現象に関する数値(観測値や統計値)の一団が与えられたとき, それらの研究対象を固有の研究方法で分析するのではなく, これらを抽象数の一団とみなし, そこに確率論を適用し, 分析することである。換言すれば, 自然科学, 社会科学を問わず, それらの固有の対象を明らかにするために不可欠な独自の研究方法にたよらず, 確率論だけで問題に接近しようとする姿勢が, これである。本稿の目的は, この確率論主義を批判的に検討することである。
筆者は問う。そもそも確率とは何なのか。それは物質の客観的な運動形態のいかなる側面を反映したものなのか。具体的な事実を特徴づけるために確率概念を適用したとき, それはいったいどのような実質的意味をもつのだろうか。
確率論がその理論的帰結として予定する「大数法則とは, ある統計値集団において特定の単一標識の特定の値があらわれる度数のその集団の大きさ(総度数)に対する比率, すなわち特定事象発現の相対素数が, 集団の大きさが大きくなる(数学的には無限となる)につれて, 一定の値(先験的確率に近づくことがほぼ確実(確率1)になることである」(p.90)。「相対度数」「先験的確率」「確からしさの程度をあらわす確率」という3つの概念がここでは重要である。
筆者は問題の所在を以上のように整理し, 次いで確率が事物の運動形態の一側面の反映であることを, たとえ部分的でも意識して確率を定義しようとした(1)古典的確率論と(2)頻度説的確率論をとりあげ, それらの意義を確認している。
古典的確率論は, われわれの経験に先立って事物の存在そのもののうちに, 一定の条件のもとにではあるが経験の結果としての一定の規則性という属性を認める。経験の背後に, 事物の存在が予定されている。問題は物自体の一属性が確率にあらわれるメカニズムに関して, 不完全な説明しかできていないことである。これに対して, 頻度説(R.v.ミーゼス)では, 確率は無規則な現象系列の中での特定事象の発現の相対頻度の極限値と定義され, 相対頻度の極限値が出現するメカニズムが客観的である。この頻度説の欠陥は, 経験がすべての大前提におかれ, そのような経験の結果が生ずることを経験以前の「物自体」の属性とされていないことである。
ミーゼスは物質の一属性が確率として発現するメカニズムを, 同一現象の繰り返し試行, あるいは同種の自然物の集団という二つの類型をもった客観的事実としてのコレクティフの性質に見出した。問題はその発現条件を事象の確率的性質の成立または存在の条件と同一視したことにあった。
以上の理解にたって, それでは先に述べた確率論主義はいかに克服されるべきなのだろうか。確率論主義が有している欠陥は, 確率論とその適用の結果が統計値集団にみとめられる安定的規則性の発現の強度を示すにすぎないにもかかわらず(なにゆえにこの集団がこの集団性をこの強度において示すかという原因機構の解明が次の研究段階である), その延長で既存の知識で対象の認識に到達しえないとなると, ただちに対象的真理, 絶対的真理が認識しえないとし(不可知論), 認識の相対性が一面的に強調されることにある(「相対主義」)。この弊を避けるには, 相対的真理の認識を徐々に高め, 全体として一歩一歩, 対象の絶対的真理に接近していく以外に方法はない。
筆者は最後に, 確率論的な認識論の不可知論的な相対主義は, 物理学の世界における古典物理学から量子力学への発展についての誤解に根拠があり, それが社会科学にもちこまれたとして, そうした物理学的世界観そのものを批判的に考察している。物理学でも, 確率概念が物理量のもつ客観的な意味をあきらかにする単なる指標とみなされず, 観測の誤差, 情報の不完全さといった認識の技術的限界が物理的認識の絶対的限界と解釈され, 確率論主義にたよることがあった。ハイゼンベルクの思考実験によって「証明」された「不確定性原理」がその一例であるという。この世界でも重要なのは, 確率概念の公理論的基礎づけや実証主義的道具化ではなく, この概念の客観性の解明である, という先見的見解の表明もある。筆者は, 社会科学もこの見解に学ぶべきだと説いている。
※コメント投稿者のブログIDはブログ作成者のみに通知されます