超音波システム研究所

超音波の新しい利用に関するブログです

間接容器を利用した、超音波攪拌技術

2024-06-18 19:48:27 | 超音波システム研究所2011

間接容器を利用した、超音波攪拌技術

超音波システム研究所(所在地:東京都八王子市)は、
 超音波伝搬状態の測定データを
 バイスペクトル解析することで、
 キャビテーションと加速度の効果に関する分類方法を開発しました。


今回開発した分類に関する方法は、
 超音波の伝搬状態に関する
 主要となる周波数(パワースペクトル)の
 ダイナミック特性(非線形現象の変化)により
 キャビテーションと加速度の効果を推定します。

これまでのデータ解析から
 効果的な利用方法を
 以下のような
 4つのタイプに分類することができました。

 1:キャビテーション主体型(線形型)
 2:音響流主体型(非線形型)
 3:ミックス型
 4:変動型

 上記の各タイプに基づいた
 装置開発・制御設定・・・
 成功事例が多数あります。

特に、
 安定性・変化の状態・・・に関して
 周波数成分による詳細な分類により、
 目的と効果に対する、効率のよい
 各種条件の設定・調整が可能になりました。

さらに、洗浄に関しては
 汚れの特性やバラツキに関する情報が得られにくいため
 このような分類をベースに実験確認することで
 効果的な超音波制御が、実現します。


この分類の本質的なアイデアは、
 超音波による定在波の特徴を、抽象代数学の
 「導来関手」に適応させるということです。

抽象的ですが
 超音波の伝搬状態を計測解析するなかで
 定在波に関する的確な対応・制御事例から
 時間経過とともに変化する状態を捉えるために
 「導来関手」とスペクトルシーケンスの関係を
 キャビテーションの強さをパラメーターにした
 複体の変化により分類することにしました。
 

 なお、超音波システム研究所の「非線形制御技術」は、
 この方法による、
 具体的な技術(例 超音波制御システム)として対応しています。

応用技術として
 非線形性の発生状態に関する研究開発を進めています。
 「超音波利用の最も大きな効果が、非線形状態の変化にある」
  という考え方が一歩進んだと考えています。




  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波の非線形現象(音響流)をコントロールする技術 ultrasonic-labo

2024-06-18 19:35:39 | 超音波システム研究所2011
超音波の非線形現象(音響流)をコントロールする技術 ultrasonic-labo


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

<超音波のダイナミック制御システム>ーー脱気ファインバブル発生液循環装置ーー

2024-06-18 19:08:50 | 超音波システム研究所2011
<超音波のダイナミック制御システム>ーー脱気ファインバブル発生液循環装置ーー




  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波の「相互作用」を利用した制御技術

2024-06-18 19:01:29 | 超音波システム研究所2011

超音波の「相互作用」を利用した制御技術

 

超音波の「相互作用」を利用した制御技術を開発

超音波システム研究所は、
 *複数の異なる周波数の振動子の「同時照射」技術
 *代数モデルを利用した「定在波の制御」技術
 *時系列データのフィードバック解析による「超音波測定・解析」技術

 上記の技術を組み合わせることで
  超音波の相互作用を利用した制御技術を開発しました。


今回開発した技術の応用事例として、
超音波の発振周波数に対する、
 対象物への伝搬周波数の関係を明確に制御できるようになりました。

特に、複数の超音波振動子を利用する場合には
 発振の順序、出力変化の方法、水槽内の液面の振動・・に関する
 各種(時間の経過による特性の変化・・)の問題に、
 <相互作用の影響>をグラフとして、把握が可能になりました。

その結果
 40kHzの超音波振動子を使用した
   200-300kHzの超音波利用が簡単になり
 洗浄・改質・攪拌・・・様々な実績につながっています。

これは、超音波に対する新しい視点です、
 今回の実施結果から
  対象物と超音波振動子の周波数の関係よりも
  システムの超音波振動による相互作用の影響が
  大変大きいことを確認しています。
  超音波の伝搬状態を有効に利用するためには
  相互作用による伝搬周波数の状態を検出することが
  重要だと考えています。


なお、今回の技術を
 2種類の超音波振動子の同時照射に適応すると
 大変簡単に伝搬周波数の制御が実施できます。

 

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波実験写真

2024-06-18 18:57:33 | 超音波システム研究所2011

超音波実験写真

 


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

メガヘルツの超音波発振制御プローブ  ultrasonic-labo

2024-06-18 18:55:11 | 超音波システム研究所2011

メガヘルツの超音波発振制御プローブ  ultrasonic-labo




  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波加湿器(1.7MHz 15W)の利用技術 ultrasonic-labo

2024-06-18 18:53:34 | 超音波システム研究所2011
超音波加湿器(1.7MHz 15W)の利用技術 ultrasonic-labo


超音波システム研究所は、
超音波加湿器(1.7MHz 15W)を利用することで、
1-100MHzの音響流(超音波伝搬状態)制御を可能にする
超音波洗浄技術を開発しました。

超音波伝搬状態の測定・解析・評価・技術に基づいた、
 精密洗浄・加工・攪拌・・・への新しい応用技術です。

各種材料の音響特性(表面弾性波)の利用により
 20W以下の超音波出力で、1000リッターの水槽でも、
 対象物への超音波刺激は制御可能です。

弾性波動に関する工学的(実験・技術)な視点と
 抽象代数学の超音波モデルにより
 非線形現象の応用方法として開発しました。

ポイントは
 治工具(弾性体:金属・ガラス・樹脂)の利用です、
 対象物の条件・・・により
 超音波の伝搬特性を確認することで、
 オリジナル非線形共振現象(注1)として
 対処することが重要です

注1:オリジナル非線形共振現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる
 超音波振動の共振現象



  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

配管を伝搬する、音とメガヘルツ超音波の組み合わせ実験(表面弾性波の伝搬制御技術)

2024-06-18 18:31:46 | 超音波システム研究所2011
配管を伝搬する、音とメガヘルツ超音波の組み合わせ実験(表面弾性波の伝搬制御技術)




  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波システム(音圧測定解析、発振制御)を利用した実験動画

2024-06-18 18:24:10 | 超音波システム研究所2011
超音波システム(音圧測定解析、発振制御)を利用した実験動画


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波洗浄器

2024-06-18 17:47:05 | 超音波システム研究所2011
超音波洗浄器


  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする