goo

Defct of formalism 4

2011-08-26 19:22:46 | Mathematics
Theorem 5. You cannot evolve theory of the direct sum by any countable axiom system.
Proof. Assume that A evolve theory of the direct sum.
Put p(x)=∏i∈x A(i) , s(x)=⊕i∈x A(i) , A(i)=Z/2Z={0",1"}=k, pi: the canonical projection.
(i∈x),
Em=A∪{m∈d, d∈N, p(d)=s(d)} (m∈N).
Like the proof of theorem 1,you get that ∪m∈N Em is consistent and has a countable model M
for which M |= m∈d for ∀m∈N and M |= p(d)=s(d) and M |= d∈N. d is an infinite set for M.
You may set up that
∀x∃y((y∈p(x)=kx)∧∀z((z∈x)→(y:x∋z→1"∈k))) ∈A,
∀x∀y((x∈N)∧(y∈s(x))→((∑i∈x pi(y))∈k)∈A,
∀x∀y∀z((x∈y)∧(z∈s(y))→(∑i∈ypi(z)=px(z)+∑i∈(y-{x})pi(z)))∈A,
∀x(∑i∈Øpi(x)=0")∈A
for these are formed for the standard model.
∃c((M |= c∈p(d)) ∧ (M |= c=(1",1",1"…(infinitely)…)))
You can set up that d={c1,c2,…} for M for M is a countable model.
M|= c∈s(d) M |= d∈N
∴ M |= e=∑i∈d pi(c)=pc1(c)+pc2(c)+…(infinitely)…=1"+1"+…(infinitely)…∈k
You need infinite terms to decide e.
Seeing the sequence of symbols,you get M |= e=1"+e. M |= 0"=e+e=1"+e+e=1"+0"=1"
This is contradiction. A isn't consistent.
I have used logic of theory of the direct sum which you may not be able to write by
logical formulas. Such theory proves that A isn't consistent. If A is consistent,
such theory isn't consistent.♦
goo | コメント ( 0 ) | トラックバック ( 0 )
 
コメント
 
コメントはありません。
コメントを投稿する
 
名前
タイトル
URL
コメント
コメント利用規約に同意の上コメント投稿を行ってください。

数字4桁を入力し、投稿ボタンを押してください。