goo

A formula giving a root of the algebraic equation

2019-11-25 03:01:33 | Mathematics
Naoto Meguro. Amateur.
MSC 2010. Primary 00A99 ; Secondary 39A60.
Key Words and Phrases. A difference equation, the algebraic equation.
The abstract. An analytic formula giving a root of the algebraic equation exists.
                                   1

I show a formula giving a root of the algebraic equation,which is written by the coefficients of the equation
and some analytic symbols.

                                   2

Set up that xn=en (1≤n≤N) and xn=∑1≤k≤N ckxn-k (n≥N+1)
Theorem 1. n≥N+1⇒ xn=∑1≤p≤N epk1+…+ks=n-p,1≤ku≤N,ks≥N+1-p1≤u≤scku.
Proof. n≥N+1⇒ xn=∑1≤n-k1≤Nen-k1ck1+∑n-k1≥N+1 ck1xn-k1.
Put n-k1-…-ks=p. If s=1,ks=n-p≥N+1-p.
By induction, you may assume that
n-k1≥N+1 ⇒ xn-k1=∑1≤p≤N epk2+…+ks=(n-k1)-p,1≤ku≤N,ks≥N+1-p1≤u≤s cku.
Substituting these, you get theorem 1.♦
Theorem 2. n≥N+1⇒ xn=∑1≤p≤Nep1≤s≤n-p0≤t≤2π(∑1≤k≤Nckeikt)s-1(∑N+1-p≤k≤Nckeikt)eit(p-n)dt/2π.
Proof. ∑k1+…+ks=n-p, 1≤ku≤N, ks≥N+1-p1≤u≤scku is the coefficient of xn-p in
(∑1≤k≤Nckxk)s-1(∑N+1-p≤k≤Nckxk) etc..♦
Put d(c1,…cN,n)=(∑1≤s≤n0≤t≤2π(∑1≤k≤Nckeikt)s-1ei(N-n)tdt)/(∑1≤s≤n-10≤t≤2π(∑1≤k≤Nckeikt)s-1ei(N-n+1)tdt).
Theorem 3. e1=1, eu=0 (2≤u≤N), xN-c1xn-1-…-cN=(x-v1)…(x-vN),
|v1|>|vu|≠0 (2≤u≤N),vu≠vk (u≠k) ⇒ d(c1,…,cN,n)→v1 (n→∞).
Proof. By theory of the difference equation, you can write xn=b1v1n-1+…+bNvNn-1.
(1,0,…0)=(b1,…,bN)A. A=(vuk-1)1≤u≤N,1≤k≤N is a matrix. detA=∏u>k(vu-vk)≠0.
(b1,…,bN)=(1,0,…0)A-1. b1 is the (1,1)component of A-1 which is v2…vN/∏u≥2(vu-v1)≠0.
(vu/v1)m→0 (m→∞). xn+2/xn+1=(b1v1+b2(v2/v1)nv2+…)/(b1+b2(v2/v1)n+…)→v1 (n→∞).
By theorem 2,d(c1,…,cN,n)→v1 (n→∞).♦
Set up that f(x)=xN+a1xN-1+…+aN=(x-w1)…(x-wN), wu=yu+zui (yu,zuR. 1≤u≤N.),
f(x-1/r-i/r")=xN-c1xN-1-…-cN, cu=-∑0≤k≤u ak N-kCN-u(-1/r-i/r")u-k (a0=1).
Theorem 4. wu≠wk (u≠k),|w1|≥|wu|≠0(1≤u≤N)⇒ ∃M((M∈N)∧∀r((M≤r)→∃M(r)((M(r)∈N)∧∀r"((M(r)≤r")
→(|w1+1/r+1/r"i|>|wu+1/r+1/r"i|≠0))))).
Proof. ∃M((M∈N)∧∀r((r≥M)→((|w1|>|wu|)→(|w1+1/r|>|wu|+1/r|≠0)))).
If |w1+1/r|=|wu+1/r| (u≠1),|w1|=|wu|. (y1+1/r)2+z12=(yu+1/r)2+zu2, y12+z12=yu2+zu2.
y1=yu,z1=-zu. ∃M(r)((M(r)∈N)∧∀r"((r"≥M(r))→((|w1+1/r|>|wu+1/r|)→(|w1+1/r+i/r"|>|wu+1/r+i/r"|≠0)))).
If |w1+1/r+i/r"|=|wu+1/r+i/r"|(u≠1),|w1+1/r|=|wu+1/r|. y1=yu,z1=-zu,(y1+1/r)2+(z1+1/r")2=(yu+1/r)2+(zu+1/r")2. z1=zu=-zu=0. w1=wu. This is contradiction. It is easy to set up |wu+1/r+i/r"|≠0 by a suitable M(r).♦
Theorem 5. If f(x)=0 (aN≠0) has no double root,
lim lim lim d(c1,…,cN,n) is a root of it.
 r→∞  r"→∞ n→∞

Proof. By theorem 3 and theorem 4, d(c1,…,cN,n)→w1+1/r+i/r" (n→∞,r≥M,r"≥M(r).)
w1+1/r+i/r"→w1+1/r (r"→∞,r"≥M(r),r≥M.) w1+1/r→w1 (r→∞,r≥M.)♦
xn+1/xn may not converge when r and r" aren't large enough. You are to skip such r and r".
                                   3

Does the above become an answer to the 12th problem of Hilbert?
goo | コメント ( 0 ) | トラックバック ( 0 )