goo

A paradox of the set theory 2

2015-12-21 20:11:26 | Mathematics
Put S={x|(x∈C)∧((Im x=0)∨(Re x=1/2))}, D={x|(x∈C)∧(Re x≥2)},
Z={f|∃h((h is a meromorphic function onC.)∧(h|D=f)∧∀x((h(x)=0)→(x∈S)))}.
If f,g∈Z,∃h,∃k, h and k are meromorphic functions and h|D=f and k|D=g.
h(x)=0⇒x∈S,k(x)=0⇒x∈S. hk is a meromorphic function and hk|D=fg. h(x)k(x)=0⇒
h(x)=0 or k(x)=0 ⇒x∈S
So fg∈Z. Define c(f)=O for ∀f∈Z. For f,g∈Z,c(fg)=O=O+O=c(f)+c(g).
Put h(p,x)=1/(1-1/px)=e(log p)x/(e(log p)x-1) (p is a prime number.)
h(p,x) is a meromorphic function. h(p,x)≠0 for ∀x∈C. So f(p,x)=h(p,x)|D ∈Z.
If Riemann hypothesis is true, ζ(x)|D=f(2,x)f(3,x)f(5,x)…(infinitely)∈Z. c(ζ(x)|D)=O then.
c(f(2,x)f(3,x))=c(f(2,x))+c(f(3,x)),c(f(2,x)f(3,x)f(5,x))=c(f(2,x))+c(f(3,x))+c(f(5,x)),…,
c(f(2,x)…f(p,x))=c(f(2,x))+…+c(f(p,x)),… Repeating this infinitely,you get
c(f(2,x)f(3,x)…(infinitely))=O+O+…(infinitely)≠O This is contradiction.
Riemann hypothesis is wrong? The hypothesis is nonsense by theorem 6,though.

Let F be a flat Z module. F is a finite set to define tensor products. F≅⊕1≤i≤mF(ni) (F(n)≅Z/nZ).
For n=ni, 0→nF(n2)≅F(n)→F(n2)→F(n2)/nF(n2)≅F(n)→0 (exact).
0→F(n)⊗F→F(n2)⊗F→F(n)⊗F→0 (exact)
0→F(n)⊗F(n)→F(n2)⊗F(n)→F(n)⊗F(n)→0 (exact) 0→F(n)→F(n)→F(n)→0 (exact)
0→F(n)→0→F(n)→F(n)→0 (exact) F(n)=0 F=0
Z is torsionfree as a Z module but isn't a flat Z module though Z is a commutative semihereditary
ring. Z isn't a set from the first,though.
goo | コメント ( 0 ) | トラックバック ( 0 )

Defect of the real number theory

2015-12-10 16:46:13 | Mathematics
You may assume the axioms ∀m∀I((m∉I)→(∑i∈I∪{m} xi=(∑i∈I xi)+xm)) and ∀m(∑i∈{m} xi=xm).
Put N={1,2,3,…}.
Theorem 1. ∑i∈N xi=x1+x2+…(infinitely)
Theorem 2. ∑i∈N x=∑i∈N-{1} x
Proof. ∑i∈N-{1} xi=x2+x3+…(infinitely)
So ∑i∈N-{1} x=x+x+…(infinitely)=∑i∈N x. ♦
Let L be a module.
Theorem 3. If xi,yi∈L for ∀i∈N, ∑i∈N xi+∑i∈N yi=∑i∈N (xi+yi).
Let 0" be the zero of L. Assume that 0"≠b∈L. Put a=∑i∈N0", d=∑i∈N b,
d"=∑i∈N (-b).
Theorem 4. a≠0"
Theorem 5. The real number theory isn't consistent.
Proof. Set up that L=R={r+∑i∈I 1/2i |(r∈Z)∧(I⊂N)},b=0+∑i∈N 1/2i. 0"=0+∑i∈∅ 1/2i=0
0"=0"b=0(0+∑i∈N 1/2i)=00+∑i∈N 0/2i=∑i∈N 0=∑i∈N 0"=a This is contradiction by theorem 4.♦
goo | コメント ( 0 ) | トラックバック ( 0 )