goo

About the integral function and Riemann hypothesis

2022-04-18 10:44:34 | Mathematics
Naoto Meguro . Amateur.

                                   1

I indicate an elementary defect of the complex function theory.
You could not prove Riemann hypothesis in the consistent mathematics.
                                    2

You may define that (e0-1)/(e0-1)=1. 1=(et-1)(e0-1)/((et-1)(e0-1))=((et+0-1)-(et-1)-(e0-1))/((et-1)(e0-1))
=((0-(e0-1)/(e0-1))(1/(et-1))= -1/(et-1)→∞ (t→0).
Let's generalize this contradiction.
Let x(t)=∑n∈N en(t-c)n be an integral function for which x(c)=0 and x´(c)=e1≠0.
x(t)=(t-c)y(t). y(c)=e1≠0. Define the function w(t) for w∈C by w(s)=w for ∀s∈C.
∀s((s∈C)→(x(s+s-s)-x(s)=0(s))∧((0(s)-x(s))/x(s)= -1(s))).
So (x(c+c-c)-x(c)-x(c))/(x(c)x(c))= -1/x(c)=∞.
Theorem 1. The complex function theory treating x(t) isn't consistent.
x(t+u-c)=∑n∈N en((t-c)+(u-c))n=(∑n∈N en(t-c)n)+(∑n∈N en(u-c)n)+(t-c)(u-c)r(t-c,u-c)
=x(t)+x(u)+(t-c)(u-c)r(t-c,u-c). (r(z,w)=2e2+3e3(z+w)+e4(4z2+6zw+4w2)+…)
|r(z,w)|≤∑n∈N |en|(|z|+|w|)n≠∞. r(0,0)=2e2.
Put I(t,u)=(x(t+u-c)-x(t)-x(u))/(x(t)x(u))=(t-c)(u-c)r(t-c,u-c)/(x(t)x(u)).
I(t,u)=(t-c)(u-c)r(t-c,u-c)/((t-c)(u-c)y(t)y(u))=r(t-c,u-c)/(y(t)y(u)) → 2e2/e12 (t→c,u→c).
I(c,c) is decided uniquely. But 2e2/e12=I(c,c)=(x(c+c-c)-x(c)-x(c))/((x(c)x(c))=∞.
This is contradiction.♦
                                3

Riemann hypothesis becomes nonsense for you can set up that x(t)=(t-1)2ζ(t) and c= 1.
If x(t)∈Q[t] and c=0, r(t-c,u-c)∈Q[t,u] and I(t,u) ∈Q(t,u) and y(t) ∈Q[t] and 2e2/e12Q.
The theory treating the elements of Q(t,u,…,v) treats these and isn't consistent and proves any
proposition. This may be the reason why Gauss didn't admit Abel's paper.
goo | コメント ( 0 ) | トラックバック ( 0 )