goo

About Riemann hypothesis

2020-09-25 03:28:38 | Mathematics
Let's make a non-standard model of the complex number theory.
Put C"=CN, N"=NN,Z"=ZN,R"=RN,{0,1}"={0,1}N.
Define f((a1,a2,…), (b1,b2,…)…,(p1,p2,…))=(f(a1,…,p1), f(a2,…p2),…) for f(a,b,,…,p).
(a1,a2,…)+(a"1,a"2,…)=(a1+a"1,a2+a"2,…) etc. then.
Let's write a=(a,a,a,…). 2k=(2,2,…)(k,k,…)=(2k,2k,…)
(a1,a2,…)/2k=(a1/2k,a2/2k,…)
Define ∑k∈N (ak 1,ak 2,…)/2k=(∑k∈Nak 1/2k,∑k∈N ak 2/2k,…).
R"={m+∑k∈N bk/2k| m∈Z",bk∈{0,1}"}.
You get a non-standard model of the complex number theory by the above.
Put {c1, c2,…}={c |(c∈C)∧(ζ(c)=0)∧(0≤Re(c)≤1)} and d=(c1,-2,c2, -4,…).
ζ(d)=(ζ(c1),ζ(-2),…)=(0,0,…)=0, Re(d)=(Re(c1),-2, Re(c2),-4,…)≠(1/2,1/2,…)=1/2,
d/(-2)=(c1/(-2),1,c2/(-2),2,…)∉N". Put RH=∀s((ζ(s)=0)∧(Re(s)≠1/2)→(s/(-2)∈N")).
RH is false in the above model. The complex number theory doesn't prove RH.
The above model doesn't treat the predicate symbol x≤y. Z" isn't a domain. The above isn't final solution.
goo | コメント ( 0 ) | トラックバック ( 0 )

A model of Peano's axioms

2020-09-14 03:56:55 | Mathematics
Naoto Meguro. Amateur.
MSC2020. Primary 03C62; Secondary 03H05.
Key Words and Phrases. Peano's axioms, Goldbach conjecture,Riemann hypothesis.
Abstract. Peano's axioms have a model in which the prime numbers don't exist.
So they don't prove Many conjectures.
                                                       1

Peano's axioms(PA) don't prove many conjectures. Let's see it.
                                                       2

Put N={1,2,…}, N"=NN/~ ((n1,n2,…)~(n"1,n"2,…) ⇔ ∃m∀k((k≥m)→(nk=n"k)).)
[n1,n2,…]={x|(x∈NN)∧(x~(n1,n2,…)}.
[M1,M2,…]={[n1,n2,…]| nk∈Mk for ∀k∈N.} for MkN for ∀k∈N.
Set up that "the subsets of N" " are these.
S([n1,n2,…])=[S(n1),S(n2),…]. By these, you get a non-standard model M for PA.
When you define [n1,n2,…]+[n"1,n"2,…]=[n1+n"1,n2+n"2,…], [n1,n2,…][n"1,n"2,…]=[n1n"1,n2n"2,…],
[n1,n2,…][n"1,n"2,…]=[n1n"1,n2n"2,…],
[n1,n2,…]+[1,1,…]=S([n1,n2,…]) and [n1,n2,…]+S([n"1,n"2,…])=S([n1,n2,…]+[n"1,n"2,…]).
[n1,n2,…][1,1,…]=[n1,n2,…] and [n1,n2…]S([n"1,n"2,…])=[n1,n2,…][n"1,n"2,…]+[n1,n2,…].
[n1,n2,…][1,1,…] and [n1,n2,…]S([n"1,n"2,…])=([n1,n2,…][n"1,n"2,…])[n1,n2,…]. Let's write n=[n,n,n,…] for n∈N.
Theorem 1. N" doesn't include the prime numbers in M.
Proof. Put A={n| an≠1} for (a1,a2,…). If a=[a1,a2,…]≠[1,1,…]=1,A is an infinite set.
You can set up that A=B∪C, B∩C=∅, B and C are infinite sets. Define bn=an when n∈B ,bn=1 when n∉B,
cn=an when n∈C, cn=1 when n∉C. Put b=[b1,b2,…] and c=[c1,c2,…]. a=bc b≠1,c≠1.♦
PA don't prove conjectures treating prime numbers like Goldbach conjecture.
Put P(p)=(p∈N")∧(p≠1)∧∀x∀y((x∈N")∧(y∈N")∧(p=xy)→(x=1)∨(y=1)). By theorem 1,M |= ¬∃pP(p).
M |= ¬GC=¬∀n((n∈N")→∃p∃q(P(p)∧P(q)∧(2(n+1)=p+q)). So ¬(PA |- GC).
¬(PA |- ∀n((n∈N")→∃p∃k((k∈N")∧(p=n+k)∧P(p)∧P(p+2))),
¬(PA |- ∀n((n∈N")→∃p∃k((k∈N")∧P(p)∧(p=n+k)∧∃m((m∈N")∧(p=2m-1)))).
Put X=PA∪{C"⊃N",C"⊃S, ∀x∀y∀z((x∈C")∧(y∈C")∧(z∈C")→(x+y∈C")∧(x+0=x)∧(x-y∈C")∧(x-x=0)∧(xy∈C")∧(x1=x)∧(xy∈C")
∧((x+y)+z=x+(y+z))∧((xy)z=x(yz))∧(x+y=y+x)∧(xy=yx)∧(x(y+z)=xy+xz)∧∀s((s∈S)→(x/s∈C")∧(s/s=1))),}.
X has a non-standard model M" in which C"=CN/~ and S=[C-{0},C-{0},…] and N"=[N,N,…] and
The "subsets of C" "are [M"1,M"2,…] (M"k⊂C".) and [z1,z2,…]-[z"1,z"2,…] =[z1-z"1,z2-z"2,…]
and [z1,z2,…]/[z"1,z"2,…]=[z1/z"1,z2/z"2,…] , Re([z1,z2,…])=[Re(z1),Re(z2),…].
In the standard model, C"=C S=C-{0},N"=N.
Put X"=X∪{ ∀s∀A((s∈C")∧(A⊂C")→(∀p(p∉A)→(∏p∈A(ps-1)/ps=1))),
∀s∀A∀q((s∈C")∧(A⊂C")∧(q∈N")→(∀p((p∈A)↔(p=q))→(∏p∈A(ps-1)/ps=(qs-1)/qs))),…., ∀p((p∈P)↔P(p))}.
X"-X includes only definitions of ∏p∈{a,b,…,z}(ps-1)/ps and P. So M" becomes a model of X".
Like theorem 1, M" |= P=∅=[∅,∅,…]. M" |= 1/ζ(s)=∏p∈P (ps-1)/ps=∏p∈[∅,∅,…] (ps-1)/ps)=1. M" |= ζ(s)=1≠0
M" |= RH=∀s((s∈C")∧(ζ(s)=0)∧(Re(s)≠1/2)→(s/(-2)∈N")). ¬(X" |- ¬RH).
                                                        3

PA seem too useless.
goo | コメント ( 0 ) | トラックバック ( 0 )