<数学> さくら教育研究所(SKREDU)

無料体験授業をスカイプで実施中! 
メールでお気軽にお問い合わせ下さい。( info@skredu.mods.jp )

1001^4+2002^4+3003^4+4004^4 を 5 で割った余りは? 

2017-02-09 | 日記

1×3×5×7×9×11×13×…×95×97×99=3^n×m(m,n は自然数で、m は 3 で割り切れない)と表すと、n は?

800までの正の整数で、800と互いに素なものは何個あるか?

1998の約数の個数は? 約数の和は? ただし、正の整数aの約数には1とaを含めるものとする。

2桁の正の整数のうち、約数がちょうど10個あるものの中で、最大なものの約数の和は?

a,b,c,d が正の整数で ad-bc=1 が成り立つとき、a+c と b+d が互いに素であることを示せ。

13で割ると余りが2である自然数Aと13で割ると余りが8である自然数Bがある。
このとき、A-Bを13で割った余りは? A+Bを13で割った余りは? 
A^2-B^2を13で割った余りは? A^2+B^2を13で割った余りは?

1001^4+2002^4+3003^4+4004^4 を 5 で割った余りは? また、7^7001 を 48 で割った余りは?

3^121 の 1 の位の数字は?

どのような整数 n に対しても、n^2+n+1 は 5 で割り切れないことを示せ。

4けたの数abcdは、a-b+c-d が11の倍数のとき、11の倍数であることを示せ。

5で割ると2余り、7で割ると4余る200以下の自然数の和を求めよ。

6x+7y=9 を満たす整数 x,y の中で |x+y| を最小にする x,y を求めよ。

1/m+1/n=1/8(m≦n)を満たす自然数の組(m,n)をすべて求めよ。

7x+7y=4xy を満たす自然数の組(x,y)をすべて求めよ。

2つの条件 a^2+ab+b^2=7 . a>|b| を満たす整数の組(a,b)を求めよ。


|2x-3|=[x] を満たす x を求めよ。ただし、[x] は x を超えない最大の整数を表す。

xに関する不等式 x^2-px+1<0 が 3個以上4個以下の整数値の解xを持つような整数値pを求めよ。

x,y,z を負でない整数とする。x+2y+4z=8 を満たす (x,y,z) の組の個数を求めよ。

x,y,k を負でない整数とする。x+2y=4k を満たす (x,y) の組の個数を求めよ。

x,y,z,n を負でない整数とする。x+2y+4z=4n を満たす (x,y,z) の組の個数を求めよ。

nを自然数とする。2x+y≦5n , x-2y≦0 , x≧0 を同時に満たす整数の組(x,y)の個数を求めよ。

nを自然数とする。2^2≦x<2^3 , 0<y≦log_{2}(x) を同時に満たす整数の組(x,y)の個数を求めよ。

nを自然数とする。2^n≦x<2^(n+1) , 0<y≦log_{2}(x) を同時に満たす整数の組(x,y)の個数を求めよ。

nを自然数とする。2^1≦x<2^(n+1) , 0<y≦log_{2}(x) を同時に満たす整数の組(x,y)の個数を求めよ。


x,y,n を負でない整数とする。x/3+y≦n を満たす (x,y) の組の個数を求めよ。

(1)(3,5)(7,9,11,13)(15,17,19,21,23,25,27,29)(31,33,・・・ のとき、第n番目の群の、項数と初項を求めよ。

(2)(4,6)(8,10,12)(14,16,18,20)・・・ のとき、100は第何群の何番目の項であるか。


2014^10 の十の位の数字を求めよ。ただし必要ならば、7^9=40353607、7^10=282475249 を用いてもよい。

2014^10 の十万の位の数字を求めよ。ただし必要ならば、7^9=40353607、7^10=282475249 を用いてもよい。

2014^10 の上3桁の数字を求めよ。ただし必要ならば、7^9=40353607、7^10=282475249 を用いてもよい。

 

1001^4+2002^4+3003^4+4004^4 を 16 で割った余りを求めよ。
1001^4+2002^4+3003^4+4004^4 を 13 で割った余りを求めよ。
1001^4+2002^4+3003^4+4004^4 を 12 で割った余りを求めよ。
1001^4+2002^4+3003^4+4004^4 を 11 で割った余りを求めよ。
1001^4+2002^4+3003^4+4004^4 を 10 で割った余りを求めよ。
1001^4+2002^4+3003^4+4004^4 を 9 で割った余りを求めよ。
1001^4+2002^4+3003^4+4004^4 を 8 で割った余りを求めよ。
1001^4+2002^4+3003^4+4004^4 を 7 で割った余りを求めよ。
1001^4+2002^4+3003^4+4004^4 を 6 で割った余りを求めよ。
1001^4+2002^4+3003^4+4004^4 を 5 で割った余りを求めよ。
1001^4+2002^4+3003^4+4004^4 を 4 で割った余りを求めよ。
1001^4+2002^4+3003^4+4004^4 を 3 で割った余りを求めよ。
1001^4+2002^4+3003^4+4004^4 を 2 で割った余りを求めよ。