超音波システム研究所

超音波の新しい利用に関するブログです

超音波実験写真

2024-03-07 22:55:41 | 超音波システム研究所2011

超音波実験写真



  • Twitterでシェアする
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

音圧測定解析に基づいた、超音波の非線形制御技術を開発

2024-03-07 21:47:28 | 超音波システム研究所2011
音圧測定解析に基づいた、超音波の非線形制御技術を開発


超音波システム研究所は、
ファンクションジェネレータの一つの発振チャンネルから
 同時に2種類の超音波プローブを発振することで発生する
 相互作用を利用して
 超音波の非線形現象(注)をコントロールする技術を開発しました。

注:非線形(共振)現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる
 超音波振動の共振現象

各種部材の超音波伝搬特性を目的に合わせて最適化することで
 効率の高い超音波発振制御が可能になります。

超音波テスターの音圧データの測定解析により
 表面弾性波のダイナミックな変化を、
 利用目的に合わせて、コントロールするシステム技術です。

実用的には、
 複数(2種類)の超音波プローブによる
 複数(2種類)の発振(スイープ発振、パルス発振)が
 複雑な振動現象(オリジナル非線形共振現象)を発生させることで
 高い音圧で高い周波数の伝搬状態、あるいは、
 目的の固有振動数に合わせた
 低い周波数の高い音圧レベルの伝搬状態を実現します。

特に、水槽やポンプ・・振動特性とメガヘルツ超音波の最適化により、
 効率の高い超音波制御
 (30W出力で、3000リットルの洗浄液に伝搬)を実現します。

ナノレベルの応用では、
 1メガヘルツの超音波発振で、
 100メガヘルツ以上の周波数変化を含めた
 効率の高い超音波刺激によるナノ操作が実現しています。

この技術は、音圧(非線形現象)測定・解析に基づいて、
 表面弾性波と超音波伝搬用具の音響特性・相互作用を利用した、
 超音波のダイナミック制御システム技術です。

興味のある方は、メールでお問い合わせください



  • Twitterでシェアする
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波プローブ実験ーー超音波の伝搬特性ーー(超音波システム研究所)

2024-03-07 19:46:13 | 超音波システム研究所2011
超音波プローブ実験ーー超音波の伝搬特性ーー(超音波システム研究所)


  • Twitterでシェアする
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波プローブの伝搬テストーー超音波のダイナミック制御技術ーー(超音波システム研究所)

2024-03-07 19:42:47 | 超音波システム研究所2011
超音波プローブの伝搬テストーー超音波のダイナミック制御技術ーー(超音波システム研究所)


  • Twitterでシェアする
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

抽象数学における、スペクトル系列を利用した超音波制御技術

2024-03-07 19:40:59 | 超音波システム研究所2011

抽象数学における、スペクトル系列を利用した超音波制御技術





  • Twitterでシェアする
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波利用技術によるコンサルティング

2024-03-07 19:17:13 | 超音波システム研究所2011

超音波洗浄技術(Supersonic wave washing technology)

新しい超音波利用技術によるコンサルティング

ガラス容器の利用方法により超音波の伝搬状態を制御することが可能となりました

この技術により現状の超音波利用や超音波装置の開発等につきまして

アドバイスをさせていただきます

これは本質的に新しい技術です

 従来は、効率を良くするために

 様々な周波数の伝搬が行われます

 

***********************
超音波システム研究所
ホームページ  http://ultrasonic-labo.com/
***********************

 


  • Twitterでシェアする
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波システム(音圧測定解析 100MHz、発振制御 25MHz)

2024-03-07 19:06:29 | 超音波システム研究所2011
超音波システム(音圧測定解析 100MHz、発振制御 25MHz)


超音波システム研究所(所在地:東京都八王子市)は、
メガヘルツの超音波の発振制御が容易にできる
「発振システム(20MHz)」を製造販売しています。

システム概要(超音波発振システム(20MHz))

 内容(20MHzタイプ)
  超音波発振プローブ 2本
  ファンクションジェネレータ 1式
  操作説明書 1式(USBメモリー)

 特徴(20MHzタイプ)
  *超音波発振周波数
   仕様 20kHz から 25MHz
  *出力範囲 5mVp-p~20Vp-p
  *サンプリングレート:200MSa/s

 市販のファンクションジェネレータを利用したシステムです
  目的に応じたファンクションジェネレータをセットにして
  見積価格を提案します

標準参考例
 発振システム20MHz 8万円~


音圧測定解析システム「超音波テスターNA」で
超音波の伝搬状態を確認することを推奨します



  • Twitterでシェアする
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波発振システム(1MHz)

2024-03-07 18:59:35 | 超音波システム研究所2011
超音波発振システム(1MHz)




  • Twitterでシェアする
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

超音波実験(超音波の音圧データ解析) ultrasonic-labo

2024-03-07 18:57:20 | 超音波システム研究所2011

超音波実験(超音波の音圧データ解析) ultrasonic-labo

超音波システム研究所は、
 超音波利用に関して、
 <統計的な考え方>を利用した
 効果的な「測定・解析・評価方法」に関する技術を開発しています。

<統計的な考え方について>
 統計数理には、抽象的な性格と具体的な性格の二面があり、
 具体的なものとの接触を通じて
 抽象的な考えあるいは方法が発展させられていく、
 これが統計数理の特質である

超音波の研究について
「キャビテーションの効果を安定させるには統計的な見方が不可欠」

<モデルについて>
モデルは対象に関する理解、予測、制御等を
効果的に進めることを目的として構築されます。

正確なモデルの構築は難しく、
常に対象の複雑さを適当に"丸めた"形の表現で検討を進めます。
その意味で、
モデルの構成あるいは構築の過程は統計的思考が必要です。

<モデルと現状のシステムとの関係性について>
( 考察する場合の注意事項 )

1)先入観や経験は正しくないことがあると考える必要があります

2)モデルの本質を考えるためには、
 圏論(注)を利用することが有効だと考えています
 (実際に応用化学や量子論などで積極的に利用されています)

注:圏論は、数学的構造とその間の関係を抽象的に扱う数学理論

<論理モデルの作成について>
(情報量基準を利用して)

1)各種の基礎技術(注)に基づいて、対象に関する、

 D1=客観的知識(学術的論理に裏付けられた理論)
 D2=経験的知識(これまでの結果)
 D3=観測データ(現実の状態)

  からなる 「情報データ群 」、DS=(D1,D2,D3) を明確に認識し
  その組織的利用から複数のモデル案を作成する

2)統計的思考法を、
   情報データ群(DS)の構成と、
   それに基づくモデルの提案と検証の繰り返し
   によって情報獲得を実現する思考法と捉える

3) AIC の利用により、
   様々なモデルの比較を行い、最適なモデルを決定する

4) 作成したモデルに基づいて
   超音波装置・システムを構築する

5) 時間と効率を考え、
 以下のように対応することを提案しています

5-1)「論理モデル作成事項」を考慮して
   「直感によるモデル」を作成し複数の人が検討する

5-2)実状のデータや新たな情報によりモデルを修正・検討する

5-3)検討メンバーが合意できるモデルにより
   装置やシステムの具体的打ち合わせに入る

上記の参考資料
 1)ダイナミックシステムの統計的解析と制御
   :赤池弘次/共著 中川東一郎/共著:サイエンス社
 2)生体のゆらぎとリズム コンピュータ解析入門
   :和田孝雄/著:講談社 

ポイントは
 表面弾性波の利用です、
 対象物の条件・・・により
 超音波の伝搬特性を確認することで、
 オリジナル非線形共振現象(注1)として
 対処することが重要です

注1:オリジナル非線形共振現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる
 超音波振動の共振現象


様々な分野への利用が可能になると考え
 各種コンサルティングにおいて提案しています。



  • Twitterでシェアする
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする

脱気・マイクロバブル発生液循環システム

2024-03-07 18:52:00 | 超音波システム研究所2011

オリジナル技術(液循環)

<脱気・マイクロバブル発生液循環システム>

超音波システム研究所は、

目的に合わせた効果的な超音波制御を実現するために、
<脱気・マイクロバブル発生液循環システム>を利用しています。

超音波液循環技術の説明

1)超音波専用水槽(オリジナル製造方法)を使用しています
2)水槽の設置
1:専用部材を使用
2:固有振動と超音波周波数・出力の最適化を行っています
3:超音波振動子は専用部材を利用して設置しています
(専用部材により、定在波、キャビテーション、音響流の利用状態を制限できます)
4)脱気・マイクロバブル発生装置を使用します
(標準的な、溶存酸素濃度は5-6mg/l)
5)水槽と超音波振動子は表面改質を行っています

上記の設定とマイクロバブルの拡散性により
均一な洗浄液の状態が実現します

均一な液中を超音波が伝搬することで
安定した超音波の状態が発生します

この状態から
目的の超音波の効果(伝搬状態)を実現するために
液循環制御を行います
(水槽内全体に均一な音圧分布を実現して、
超音波、脱気装置、液循環ポンプ、・・の運転制御がノウハウです)

目的の超音波状態は音圧測定解析で行います

ポイントは
適切な超音波(周波数・出力)と液循環のバランスです
液循環の適切な流量・流速と超音波キャビテーションの設定により
超音波による音響流・加速度効果の状態をコントロールします

脱気・マイクロバブルの効果で
均一に広がる超音波の伝搬状態を利用します

液循環により、以下の自動対応が実現しています

溶存気体は、水槽内に分布を発生させ
レンズ効果・・・の組み合わせにより、超音波が減衰します

もうひとつは
適切な液循環による効率の良い超音波照射時は、
大量の空気・・が水槽内に取り入れられても
大きな気泡となって、水槽の液面から出ていきます

しかし、超音波照射を行っていない状態で
オーバーフロー・・により
液面から空気を取り込み続けると、超音波は大きく減衰します。

この空気を入れる操作は必要です
多数の研究報告・・がありますが
液循環の無い水槽で、長時間超音波照射を行い続け
溶存気体の濃度が低下すると
音圧も低下して、キャビテーションの効果も小さくなります
(説明としては、キャビテーション核の必要性が空気を入れる理由です
液面が脱脂油や洗剤の泡・・・で覆われた場合も空気が遮断され
同様な現象になります)

さらに、
超音波照射により、脱気は行われ
溶存気体の濃度は低下して、分布が発生します
単純な液循環では、この濃度分布は解消できません

この濃度分布の解決がマイクロバブルの効果です

脱気・マイクロバブル発生液循環が有効な理由です

以下の動画は
超音波とマイクロバブルによる
表面改質処理を行った水槽を利用して、
(超音波の共振・減衰・キャビテーション・音響流・・を制御している)
適切な液循環の状態を紹介しています

https://youtu.be/o3Qpl-cQ7Bs

https://youtu.be/yFJg_j3oQ7A

https://youtu.be/j5dXEfK06q8

https://youtu.be/aoWj5Rk821o

https://youtu.be/3-X8mtTX4mI

https://youtu.be/B9VEMuMlVp4

https://youtu.be/cUOZwQhaEfg

https://youtu.be/aPokM9mDdtI

https://youtu.be/T6vzGtEd5ug

https://youtu.be/_42NEXTwbdw

https://youtu.be/i8YUuzLHXUw

https://youtu.be/G2Co9Qdkj1M

https://youtu.be/fOGJ2SbC8bk

https://youtu.be/Z0WpAL3sx00

https://youtu.be/rV93lZVqu5U

上記の技術により
目的の超音波利用に合わせた
水槽の構造設計や液循環位置(ポンプへの吸い込み口、吐出口)は
非常に重要ですが
目的・サイズ・洗浄液・・により反対になる場合もあり、
一般的な設定はありません
(具体的な数値は、コンサルティング対応しています)

適切な設定が実現すると
マイクロバブルは超音波作用によりナノバブルに分散します
ナノバブルによる超音波の安定性は、マイクロバブルに比べて大きく
制御がより簡単になります
(具体的な制御は、音圧測定・・・コンサルティング対応しています
洗剤の使用や撹拌・・では、
通常の洗浄とは反対の対応事例が多い傾向にあります)

超音波水槽の新しい液循環システム
http://ultrasonic-labo.com/?p=1271

現状の超音波装置を改善する方法
http://ultrasonic-labo.com/?p=1323


超音波制御装置(制御BOX)
http://ultrasonic-labo.com/?p=4906

シャノンのジャグリング定理を応用した
「超音波制御」方法
http://ultrasonic-labo.com/?p=1753


超音波専用水槽の設計・製造技術
http://ultrasonic-labo.com/?p=1439

超音波による金属・樹脂の表面改質技術
http://aeropres.net/release/html/3242

 


 

  • Twitterでシェアする
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする