goo blog サービス終了のお知らせ 

とね日記

理数系ネタ、パソコン、フランス語の話が中心。
量子テレポーテーションや超弦理論の理解を目指して勉強を続けています!

開平と開立(第11回):54,756の算盤による開平(倍根法5)

2017年03月31日 19時40分00秒 | 開平、開立
開平はん」に54,756を置いたところ


[English]

前回に続き、算盤での開平の手順を解説する。今回も倍根法で、根が3桁の場合だ。理論編も参考にしていただきたい。

開平(平方根):倍根法(2商法)、倍根法別法、半九九法、半九九法別法、乗減法、定数法(折衷法) 、過大数開平、省略開平など


算盤による54,756の2乗根の解法(答は234)

第1群の数とは平方根を求める数を2桁ずつ区切り、いちばん大きい(いちばん左)の2桁のことである。群の数が根の桁数となる。

54756 -> (05|47|56) : 5が第1群の数、根の桁数は3


手順1:54756を置く。第1群は5。


手順2:5以下の平方数は4=2x2。2を初根としてDに立てる。初根2の2倍の4をAに置き、倍根とする。


手順3:2の平方を第1群の5から引く。5-4=1となる。: -a^2


手順4:14に注目し、倍根4で割る。


手順5:商3を得て、割止め、この商を次根とする。次根3をEに置く。: ÷2a


手順6:倍根4と商3の積を14から引く。14-4x3=02。


手順7:27に注目する。


手順8:次根3の平方=9を第2群の27から引く。


手順9:次根3の2倍=6を倍根に加える。つまり2x3=6をBに置く。


手順10:倍根46と185に注目する。


手順11:185を倍根46で割り、商4と余り1を得る。第3根の4と余り1をF,Iに置く。


手順12:第3根4の平方=16を第3群の16から引く。16-16=00をIJに置く。: -b^2


手順13:根は234と求まる。


最終状態: 答 234

珠の状態推移を表にすると次のようになる。(クリックで拡大)


同じ問題の半九九法での解法と比べてみてほしい。


第12回も引き続き倍根法による開平を行う。


関連記事:

ファインマン v.s. 算盤の達人: ファインマン先生に立方根計算の雪辱を果たそう
http://blog.goo.ne.jp/ktonegaw/e/89a0b907577f03ef6132cf9664bdcddb

目次:算盤による平方根、立方根の計算(開平、開立)
http://blog.goo.ne.jp/ktonegaw/e/bb0449f357398a2c24026f33af7f70ee

開平と開立(第34回):54,756の算盤による開平(半九九法4)
http://blog.goo.ne.jp/ktonegaw/e/45c2e759e9cf9904092d2aff42c39bd4


ブログ執筆のはげみになりますので、1つずつ応援クリックをお願いします。
にほんブログ村 科学ブログ 物理学へ 人気ブログランキングへ 


とね日記は長年放置されている科学ブログランキングの不正クリックに対し、次のランキングサイトには適切な運営を期待します。
FC2自然科学ブログランキング」:不正の例1 例2
にほんブログ村、科学ブログランキング」:New-不正の例1
不正クリックブログの見分け方


  

 
コメント    この記事についてブログを書く
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする
« Square root 54,756 using ab... | トップ | 発売情報:一般相対性理論を... »

コメントを投稿

サービス終了に伴い、10月1日にコメント投稿機能を終了させていただく予定です。
ブログ作成者から承認されるまでコメントは反映されません。

開平、開立」カテゴリの最新記事