裏 RjpWiki

Julia ときどき R, Python によるコンピュータプログラム,コンピュータ・サイエンス,統計学

算額(その1328)

2024年09月30日 | Julia

算額(その1328)

七八 加須市大字外野 棘脱地蔵堂 明治9年(1876)
埼玉県立図書館:埼玉県史料集 第二集『埼玉の算額』,昭和44年,誠美堂印刷所,埼玉県与野市.
キーワード:円7個,正方形
#Julia, #SymPy, #算額, #和算

正方形の中に大円,中円,小円を容れる。大円の直径が 10 寸,小円の直径が 1.2 寸のとき,中円の直径はいかほどか。

注:この「問」には難点が多い。(1) 図には小円が見当たらない(図に示したところにある)。(2) 小円の直径が 1.2 寸,「答」の中円の直径が 5.7 寸有奇というのも不適切な数値である。そこで,「大円の直径が 10 寸」のみを条件として正しい解を求める。

正方形の一辺の長さは,大円の直径と同じである。
正方形の一辺の長さを a
大円の半径と中心座標を r1, (r1, r1); a = 2r1
中円の半径と中心座標を r2, (a - r2, r2), (r2, a - r2)
小円の半径と中心座標を r3, (x3, r3), (r3, x3), (a - x3, a - r3), (a - r3, a - x3)
とおき,以下の連立方程式を解く。

include("julia-source.txt");

using SymPy
@syms a::positive, r1::positive, r2::positive,
     r3::positive, x3::positive;
a = 2r1
eq1 = (r1 - x3)^2 + (r1 - r3)^2 - (r1 + r3)^2
eq2 = r3/x3 - r2/(a - r2)
eq3 = dist2(0, 0, a, a, a - r2, r2, r2)
res = solve([eq1, eq2, eq3], (r2, r3, x3))[2]

   (r1*(2 - sqrt(2)), r1*(-3*sqrt(2) - 2*sqrt(4 - 2*sqrt(2)) + 2*sqrt(2 - sqrt(2)) + 5), r1*(-2*sqrt(2 - sqrt(2)) - 1 + 2*sqrt(2)))

大円の直径(正方形の一辺の長さ)が 10 のとき,中円の直径は 5.85786437626905,小円の直径は 1.23308641756286 である。

res[1](r1 => 10/2).evalf() * 2 |> println
res[2](r1 => 10/2).evalf() * 2 |> println

   5.85786437626905
   1.23308641756286

function draw(r1, r3, more)
    pyplot(size=(500, 500), grid=false, aspectratio=1, label="", fontfamily="IPAMincho")
   a = 2r1
   (r2, r3, x3) = (r1*(2 - sqrt(2)), r1*(-3*sqrt(2) - 2*sqrt(4 - 2*sqrt(2)) + 2*sqrt(2 - sqrt(2)) + 5), r1*(-2*sqrt(2 - sqrt(2)) - 1 + 2*sqrt(2)))
   @printf("大円の直径(正方形の一辺の長さ)が %g のとき,中円の直径は %g,小円の直径は %g である。\n", 2r1, 2r2, 2r3)
   plot([0, a, a, 0, 0], [0, 0, a, a, 0], color=:green, lw=0.5)
   circle(r1, r1, r1, :blue)
   circle(a - r2, r2, r2)
   circle(r2, a - r2, r2)
   circle(x3, r3, r3, :magenta)
   circle(r3, x3, r3, :magenta)
   circle(a - x3, a - r3, r3, :magenta)
   circle(a - r3, a - x3, r3, :magenta)
   segment(0, 0, a, a, :green)
   if more
       delta = (fontheight = (ylims()[2]- ylims()[1]) / 500 * 10 * 2) /3  # size[2] * fontsize * 2
       hline!([0], color=:gray80, lw=0.5)
       vline!([0], color=:gray80, lw=0.5)
       point(r1, r1, "大円:r1,(r1,r1)", :blue, :left, delta=-delta/2)
       point(a - r2, r2, "中円:r2,(a-r2,r2)", :red, :center, delta=-delta/2)
       point(x3, r3, " 小円:r3,(x3,r3)", :magenta, :left, :vcenter)
       point(2r1, 0, " 2r1", :green, :left, :bottom, delta=delta/2)
       point(0, 2r1, " 2r1", :green, :left, :bottom, delta=delta/2)
   end  
end;

draw(10/2, 1.2/2, true)


コメント    この記事についてブログを書く
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする
« 算額(その1327) | トップ | 算額(その1329) »
最新の画像もっと見る

コメントを投稿

Julia」カテゴリの最新記事