因数分解せよ。
(1) $\left(a^2 -1\right)\left(b^2-1\right)+4ab$
(2) $xyz\left(x^3 + y^2 + z^3\right) - \left(x^3y^3 + y^3z^3 + z^3x^3\right)$
解答:
(1) $\left(a^2 -1\right)\left(b^2-1\right)+4ab$
$=\left(b^2-1\right)a^2 + 4b\cdot a -\left(b^2 - 1\right)$
$=(b-1)(b+1)a^2 + 4b\cdot a - (b-1)(b+1)$
$=\left((b-1)a+(b+1)\right)\left((b+1)a-(b-1)\right)$
$=(ab-a+b+1)(ab+a-b+1)$.
(2) $xyz\left(x^3 + y^2 + z^3\right) - \left(x^3y^3 + y^3z^3 + z^3x^3\right)$
$=yz\cdot x^4 - (y^3 + z^3)x^3 + yz(y^3 + z^3)x - y^3z^3$
$=yz(x^4 - y^2z^2) - x(x^2 - yz)(y^3 + z^3)$
$=yz(x^2 - yz)(x^2 +yz) - x(x^2 - yz)(y^3 + z^3)$
$=(x^2 - yz)\left(yz(x^2 +yz) - x(y^3 + z^3)\right)$
$=(x^2 - yz) \left(yz\cdot x^2 - x(y^3 + z^3) + y^2z^2\right)$
$=(x^2 - yz)(yx - z^2)(zx - y^2)$
$=(x^2 - yz)(y^2 - zx)(z^2 - xy)$.
(1) $\left(a^2 -1\right)\left(b^2-1\right)+4ab$
(2) $xyz\left(x^3 + y^2 + z^3\right) - \left(x^3y^3 + y^3z^3 + z^3x^3\right)$
解答:
(1) $\left(a^2 -1\right)\left(b^2-1\right)+4ab$
$=\left(b^2-1\right)a^2 + 4b\cdot a -\left(b^2 - 1\right)$
$=(b-1)(b+1)a^2 + 4b\cdot a - (b-1)(b+1)$
$=\left((b-1)a+(b+1)\right)\left((b+1)a-(b-1)\right)$
$=(ab-a+b+1)(ab+a-b+1)$.
(2) $xyz\left(x^3 + y^2 + z^3\right) - \left(x^3y^3 + y^3z^3 + z^3x^3\right)$
$=yz\cdot x^4 - (y^3 + z^3)x^3 + yz(y^3 + z^3)x - y^3z^3$
$=yz(x^4 - y^2z^2) - x(x^2 - yz)(y^3 + z^3)$
$=yz(x^2 - yz)(x^2 +yz) - x(x^2 - yz)(y^3 + z^3)$
$=(x^2 - yz)\left(yz(x^2 +yz) - x(y^3 + z^3)\right)$
$=(x^2 - yz) \left(yz\cdot x^2 - x(y^3 + z^3) + y^2z^2\right)$
$=(x^2 - yz)(yx - z^2)(zx - y^2)$
$=(x^2 - yz)(y^2 - zx)(z^2 - xy)$.