f(y) = sin(y), g(x) = x + π/2 とすると、
d/dx cos(x)
= d/dx sin(x + π/2)
= d/dx sin(g(x))
= d/dx f(g(x))
= f’(g(x)) g'(x) (∵ d/dx f(g(x)) = f'(g(x)) g'(x) )
= cos(g(x)) g'(x)
= cos(x + π/2)・1
= - sin(x)
最新の画像[もっと見る]
f(y) = sin(y), g(x) = x + π/2 とすると、
d/dx cos(x)
= d/dx sin(x + π/2)
= d/dx sin(g(x))
= d/dx f(g(x))
= f’(g(x)) g'(x) (∵ d/dx f(g(x)) = f'(g(x)) g'(x) )
= cos(g(x)) g'(x)
= cos(x + π/2)・1
= - sin(x)