半径 r の球の上半分の半球の体積を求める。
半球を、高さ h/n の薄い円柱(円盤状の円柱) n 個で近似する。
内接する(円柱の上面が半球に接する)ように近似すると、
内接する円柱n個の体積の合計
= π(r^2-(1r/n)^2)(r/n)+π(r^2-(2r/n)^2)(r/n)+‥‥+π(r^2-(nr/n)^2)(r/n)
= π(r/n)^3 ((n^2 - 1^2) + (n^2 - 2^2) + ‥‥ + (n^2 - n^2))
= π(r/n)^3 (n・n^2 - (1^2 + 2^2 + ‥‥ + n^2))
= π(r/n)^3 (n^3 - (1/6) n (n + 1) (2n + 1))
= πr^3 (1 - (1/6) (1 + 1/n) (2 + 1/n))
外接する(円柱の下面が半球に接する)ように近似すると、
外接する円柱n個の体積の合計
= π(r^2-(0r/n)^2)(r/n)+π(r^2-(1r/n)^2)(r/n)+‥‥+π(r^2-((n-1)r/n)^2)(r/n)
= π(r/n)^3 ((n^2 - 0^2) + (n^2 - 1^2) + ‥‥ + (n^2 - (n-1)^2))
= π(r/n)^3 (n・n^2 - (0^2 + 1^2 + ‥‥ + (n-1)^2))
= π(r/n)^3 (n・n^2 - ( 1^2 + ‥‥ + (n-1)^2))
= π(r/n)^3 (n^3 - (1/6) (n-1) ((n-1) + 1) (2(n-1) + 1))
= π(r/n)^3 (n^3 - (1/6) (n - 1) n (2n - 1))
= πr^3 (1 - (1/6) (1 - 1/n) (2 - 1/n))
内接する円柱n個の体積の合計 < 半球の体積 < 外接する円柱n個の体積の合計
lim[n→∞]内接する円柱n個の体積の合計≦半球の体積
≦lim[n→∞]外接する円柱n個の体積の合計
lim[n→∞](πr^3 (1 - (1/6) (1 + 1/n) (2 + 1/n)))≦半球の体積
≦lim[n→∞](πr^3 (1 - (1/6) (1 - 1/n) (2 - 1/n)))
πr^3 (1 - (1/6) (1 + 0 ) (2 + 0 )) ≦半球の体積
≦ πr^3 (1 - (1/6) (1 - 0 ) (2 - 0 ))
πr^3 (1 - 1/3 ) ≦半球の体積
≦ πr^3 (1 - 1/3 )
(2/3)πr^3 ≦半球の体積
≦ (2/3)πr^3
半球の体積 = (2/3)πr^3
球の体積 = 半球の体積×2 = (2/3)πr^3×2 = (4/3)πr^3