弦理論(げんりろん、英: string theory)は、粒子を0次元の点ではなく1次元の弦として扱う理論、仮説のこと。ひも理論、ストリング理論とも呼ばれる。
1970年に南部陽一郎、レオナルド・サスキンド 、ホルガー・ベック・ニールセン (Holger Bech Nielsen|en) が独立に発表したハドロンに関する理論によって登場したものの、量子色力学にその座を譲った。しかし、1984年にマイケル・グリーンとジョン・シュワルツ (John Henry Schwarz) が発表した超対称性及び、カルツァ=クライン理論を取り入れた超弦理論
(superstring theory)によって、再び表舞台に現れた。4つの基本相互作用を統一する試みとして注目されている。
最近では、超弦理論やM理論を含む広い意味で「弦理論 (string theory)」と呼ぶことも多いが、ここでは超対称性を持たないボゾン弦 (bosonic string) について記述する。
弦理論
1970年に南部、サスキンド、ニールセンによって独立に発表されたハドロンの弦理論は、このsチャンネルとtチャンネルの双対性を説明可能なモデルとして登場した。彼らは、核力を表現したオイラー形式のモデルを振動する一次元の弦とする物理的解釈を提示した。この理論では、長さ10-15mオーダーの一次元の弦が回転、振動しており、モード、エネルギーの異なる弦の運動が、それぞれ異なるハドロン粒子として観察される。また、上記のsチャンネルとtチャンネルはトポロジー的に同一のものと見なす事ができる。
南部はブルーバックスにおいて、一般にもわかりやすい説明を行っている[。1964年にゲルマンとツワイクによって提唱されたクォークの概要説明を以下に示す。
- 点としての粒子ではなく、弦(ひも)の端部に相当するとみなす。
- ハドロンは3個(バリオン)または2個(メソン)のクォークから構成されていると考えられているが、ハドロンから単体のクォークを分離する事はできない(クォークの閉じ込め)。これは、弦理論によってこれを定性的に説明可能である。
- 仮に弦(ひも)を切断する事ができたにせよ、「弦(ひも)の先端」を単独で取り出す事は不可能であり、切断された弦(ひも)にはいつまでも端部が存在する。
1974年、ジョン・シュワルツおよびJoel Scherk (en) 、そして独立に米谷民明は、弦振動のボース粒子の様な振る舞いを研究し、それらの性質が厳密に重力(仮説上の重力の"メッセンジャー"粒子である重力子)の性質と合致することを発見した。物理学者たちはこの弦理論の発展の余地を過小評価していたため、シュワルツおよびScherkは弦理論は流行するのに失敗したと議論していた。この議論の結果、ボソン弦理論は弦理論として最初に多くの生徒に教えられることとなり、後の発展につながった。
超弦理論へ
ハドロンの弦理論が失敗に終わった後も、ごく一部の研究者は重力を含んだ系を記述できる弦理論に魅力を感じ、研究を継続していた。1970年代前半、ジョン・シュワルツとアンドレ・ヌボー (en) は、整数スピンのボソン的弦に半整数スピンのフェルミ粒子の性質をつけ加えた、超対称性の弦理論を作った。しかし同時期にゲージ理論による大統一の研究が盛んになっており、弦理論は忘れられた存在となった。
この間にもジョン・シュワルツとマイケル・グリーンは粘り強く研究を継続し、1984年には相対論と整合性があり、量子化された超対称性などをとりいれて超弦理論を打ち立てた。彼らは弦の長さを10-35mオーダーの微小なものとし、弦の運動する時空を10次元とした。また、特殊な内部対称性を用いることで、数学的矛盾の無い物質の最小単位の理論とすることに成功した。
尚、1995年、エドワード・ウィッテンにより提唱されたM理論では、5つの超弦理論が11次元の一つの理論に統合されている。
登場する粒子
場の量子論では、クォーク・レプトン・ゲージ場といった多くの種類の量子場が存在する事を前提としている。弦理論の描像では対照的に、全ての物理的実体は、ただ一種類の弦の様々な状態に対応する。
弦は自然長ゼロ、自然長の状態での質量もゼロ(だが特殊相対性理論から、弦が振動エネルギーを持つ時にはE=mc2の関係式で質量を持つ)
のみを手で与える。張力はたとえ変えても系全体が相似に拡大縮小されるだけなので、内部で起こる物理には影響を及ぼさない。 α'はレッジェの傾きパラメータと呼ばれ、歴史的な理由から張力そのままではなくこのパラメータが用いられる。あるいは、長さの次元を持ったパラメ
ータ
を代わりに用いる事がある。ハドロンの弦理論では核子の大きさ程度、量子重力理論としての弦理論ではプランク長程度に取られる事が一般的である。 作用(≒弦の持つエネルギー)は、空間に時間を加えた二次元面の表面積に比例し、南部=後藤作用と呼ばれる。あるいは同値であるが経路積分での扱いが容易なポリヤコフ作用が用いられる事もある。
観測される粒子は、ごく短い弦が振動しながら飛び回る状態として記述される。 以下最も簡単な例として、26次元時空の平坦な時空について、閉じた弦と開いた弦の振る舞いを見る。
まず開いた弦について、最も低いエネルギーの状態は振動せず飛ぶ弦である。次の状態として、ある一つの方向に自由端定在波一倍振動をする弦がある。量子的な弦なので振幅は量子化され、1量子分のエネルギーを持った状態が第一励起状態となる。 さらに、量子効果として振動の零点エネルギーへの寄与がある。相対論的な弦の場合、この量子効果はマイナスに働き、最低エネルギーの開弦は負の質量二乗(虚数質量)を持つスカラー粒子、開弦タキオンとなる。一方、第一励起状態の弦は質量ゼロとなり、横波24成分を持つゲージ粒子となる。
閉じた弦は定在波だけでなく進行波を許すので、物理的自由度は二倍となる。ただし、弦が内部構造を持たない実体であるという制限から、状態の数は減る。 その結果、基底状態は閉弦タキオン、第一励起状態は242の成分を持ったゼロ質量テンソル粒子で、うち対称な成分が重力子、トレース成分がディラトン、反対称な成分が2-形式ゲージ粒子となる。2-形式ゲージ粒子は、粒子が持つ電荷と結合するゲージ粒子の拡張で、弦が持つストリングチャージと結合する。
これらより重い状態は、lsをプランク長程度とすると最低でも1/√α'=プランク質量の質量を持つため、とりあえず無視される場合が多い。
弦の場の理論
現在の定式化では、南部=後藤作用もしくはポリヤコフ作用から出発し、弦の単一過程の確率振幅を求める事が出来る。場の量子論とのアナロジーで言えば、これはファインマンダイアグラムの一つ分に相当する。全ての過程のダイアグラムを足し合わせる事によって振幅を求める事は可能とされるが、これは理論が摂動論で定義されたに過ぎない。場の量子論では場というもので作用を書き下し、それを摂動展開する事によってファインマンルールを得るが、弦理論でのこれに相当する定式化、弦の場の理論はミチオ・カクと吉川圭二による提唱以来、様々な研究が重ねられてきたが、未完成である。
例えばDブレーンは、非摂動論的な対象の一つである。 Dブレーンは開弦から出来ており、ボソン弦理論の全てのDブレーンは開弦由来のタキオンを含む。タキオンの存在は場の理論においては、その状態が不安定である事を意味し、結論としてボソン弦理論の全てのDブレーンは崩壊する。 崩壊後の状態は、Dブレーンがないため開弦が存在できず、もはや弦での記述が不可能となる。弦の場の理論はこのような状態の記述が出来ると期待され、実際に数値計算でならばポテンシャルが求められている。極めて小さいエネルギーで安定状態が存在するとされる(タキオン凝縮, en)。
閉弦タキオンに関してはこのような物理的解釈すら出来ない。これをもってボソン弦理論は不完全であり、弦の完全な定式化のためには超対称性が必要不可欠であるとする立場がある一方、弦の場の理論の研究はなおも続けられている。
wikipediaより抜粋
ファーファ「三次元を超える次元があると」
soop「この理論が適応するならね可能性は極めて高いらしいよ」