ブログはじめました!( JR6RMQ )

写真付きで日記や趣味を書くならgooブログ

コンデンサつなぎ替え

2024-05-07 17:04:10 | 電気回路

知恵袋: https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q14297588484

▶答え

(1):(2/3)CV

(2):(4/15)CV

(3):(2/5)CV

 

▶別解

(1)、スイッチがaの時、

C, 2Cは直列で印加電圧=Vとして

(電荷の公式Q=CVよりV=Q/Cなので)

キルヒホッフの第2法則より

V=Q/C+Q/2C

=Q×(1/C+1/2C)

=Q×(3/2C)

=Q/(2C/3)

∴2Cの上極板の電気量Q=2CV/3=(2/3)CV …(答え)

 

(2)、その後スイッチをbにすると

2Cの電圧=V/3なので、このV/3により直列の2C, 3Cに時計回り方向へ流れる電気量Q3とすると

(キルヒホッフの第2法則より)

V/3=Q3/2C+Q3/3C

=Q3×(1/2C+1/3C)

=Q3/(6C/5)

Q3を求めると

Q3=(V/3)×(6C/5)

=6CV/15

=2CV/5

∴2Cの上極板の電気量=2CV/3−2CV/5

=4CV/15

=(4/15)CV …(答え)

 

(3)、その後スイッチをaにすると

電源電圧V

Cの電圧=−2V/3

2Cの電圧=−2V/15

なので

電圧計=V−2V/3−2V/15

=3V/15

=V/5

なので、このV/5により直列のC, 2Cに時計回り方向へ流れる電気量Q2とするとキルヒホッフの第2法則より

V/5=Q/C+Q/2C

=Q×(1/C+1/2C)

=Q2/(2C/3)

Q2を求めると、Q2=(V/5)×(2C/3)

=2CV/15

∴2Cの上極板の電気量=4CV/15+2CV/15

=6CV/15

=2CV/5

=(2/5)CV …(答え)



最新の画像もっと見る

コメントを投稿