goo blog サービス終了のお知らせ 

Example Oriented Education

Contents of blog by bonsai-chat are introduced in English

Example Oriented Learning

2018-07-22 16:23:42 | edu

{Example Oriented Learning}/HCU?
@http://blog.goo.ne.jp/ep58-kit/e/9f6ddc9f714324c2e586e5f021db5d9e


%0:Example Oriented Learning

公式の丸暗記を避けるための一つの方法は,公式になる直前の式(以下,仕掛品といいます)を覚えることです.

{丸暗記による公式の誤用例}
@http://blog.goo.ne.jp/bonsai-chat/e/bce61d58f8dda8c6717a90bb646369a5

"Example Oriented Learning" emphasizes that refined examples are better than
generalized explanation with formulas and theorems in education.

%1:Simple Examples

%1.0:Example1.0
Let  f(x)=x2+2x+3=0.  Then
  x2+2x+1-4=0.
  (x+1)2=4.
Hence
  x+1=±2

%1.1:Example1.1
Let  f(x)=ax2+bx+c=0(a≠0).  Then
a(x+b/2a)2+c/a-b2/4a
a(x+b/2a)2+c/a-b2/4ac
a(x+b/2a)2=b2-4ac/2a
x=(-b)±(b2-4ac)1/2)/2a
・usually, 「(b2-4ac)1/2
」is expressed in anotherway.


%1.2:Example1.2
If f(x)=x2+2x+3=0, Then f(1)=1+2+3=0.
f(x)/(x-1)=x+3,f(x)=(x-1)(x+3)


%2:Difficult Examples

%2.1:Example2.1

When f(x)=x2+2x+5=0,
  (x+1)2=-4.
Suppose that there exists the number  i such that i2=-1,

  x+1=±2i
Imaginary uniti」is a difficult number
explained in [B2014-03.pdf] 
https://researchmap.jp/?page_id=398&lang=english
2014/03/01 GF(3) の拡大 研究ブログ
can be downloaded from
https://1drv.ms/b/s!Ahb2teuYQIZ7hV1Zg4CDqSkeRlo6
・「GF(3)」is better example than 「GF(3)」to unerstand the properties of「GF(pn)」.

%2.2:Kirchhoff's Law

There exist students who cannot use Kirchhoff's Law, and give up to solve simple problems like

https://eleking.net/k21/k21t/k21t-combined.html

・Examples in [%0].{公式より仕掛品} cannot be solved without understanding Kirchhoff's Law


%2.3:Heaviside Operator

At the time, Heaviside's methods were not rigorous, and his work was not further developed by mathematicians.
This technique was fully developed by the physicist Oliver Heaviside in 1893.

%2.4:・How to Solve It
https://en.wikipedia.org/wiki/How_to_Solve_It

%4:Inadequate
Examples in {例題指向型教材}
%42:嘘つきのパラドックス
https://ja.wikipedia.org/wiki/自己言及のパラドックス
https://en.wikipedia.org/wiki/Liar_paradox
For a better understanding of the liar paradox, it is useful to write it down in a more formal way. If "this statement is false" is denoted by A and its truth value is being sought, it is necessary to find a condition that restricts the choice of possible truth values of A. Because A is self-referential it is possible to give the condition by an equation.

%5:How to Select examples

%5.1:[
?HCD:減加法の筆算]への補足


Procedure is shown using representative column 「Q」

・Probably, such explanation is much easier to read than that of
exact translation of the original sentence


 home={List of Files}


 




最新の画像もっと見る

コメントを投稿

サービス終了に伴い、10月1日にコメント投稿機能を終了させていただく予定です。